AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

Students get through AP Inter 1st Year Physics Important Questions 4th Lesson సమతలంలో చలనం which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 4th Lesson సమతలంలో చలనం

Very Short Answer Questions (అతిస్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
ఒక సదిశ నిలువు అంశం దాని క్షితిజ సమాంతర అంశానికి సమానం. ఆ సదిశ X-అక్షంతో చేసే కోణం ఎంత? [AP 19][TS 18][Imp.Q]
జవాబు:
\(\overrightarrow{R}\) అనే సదిశ X-అక్షంతో ‘θ’ కోణం చేస్తుంటే
\(\overrightarrow{R}\) యొక్క లంబాంశం \(\overrightarrow{R}\) = R sinθ
\(\overrightarrow{R}\) యొక్క సమాంతర అంశం = R cosθ
∴ Rcosθ = Rsinθ ⇒ tane = 1 ⇒ θ = 45°

ప్రశ్న 2.
ఒక సదిశ \(\overrightarrow{v}\) క్షితిజ సమాంతరంతో θ కోణం చేస్తుంది. ఆ సదిశను θ కోణం భ్రమణం చెందించడమైనది. ఈ భ్రమణం సదిశ \(\overrightarrow{v}\) లో మార్పు తెస్తుందా?
జవాబు:
సదిశను ‘θ’ కోణంతో తిప్పినపుడు దాని పరిమాణం మారదు. కాని దిశ మారుతుంది. అనగా సదిశ \(\overrightarrow{v}\) మారినట్లు.

ప్రశ్న 3.
3 యూనిట్లు, 5 యూనిట్లు పరిమాణం గల రెండు బలాలు ఒకదానితో ఒకటి 60° కోణం చేస్తున్న వాటి ఫలిత పరిమాణం ఎంత? [TS 22][AP 15,16,17]
జవాబు:
P = 3 మరియు Q = 5 మరియు θ = 60° ⇒ cosθ = cos60° = 1/2
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 1

ప్రశ్న 4.
\(\overrightarrow{A}=\overrightarrow{i}+\overrightarrow{j}\) ఈ సదిశ x-అక్షంతో చేసే కోణం ఎంత? [Imp.Q][AP 20,22][TS 17,20]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 2

ప్రశ్న 5.
7 యూనిట్లు, 24 యూనిట్లు పరిమాణం గల రెండు సదిశలు ఒక దానితో ఒకటి లంబకోణం చేస్తున్న వాటి ఫలిత సదిశ పరిమాణం ఎంత? [IPE’14][Imp.Q][AP 16,18]
జవాబు:
P = 7 మరియు Q = 24; θ = 90° ⇒ cosθ = cos90° = 0
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 3

ప్రశ్న 6.
\(\overrightarrow{P}=2\overrightarrow{i}+4\overrightarrow{j}+14\overrightarrow{j}\) మరియు \(\overrightarrow{Q}=4\overrightarrow{i}+4\overrightarrow{j}+10\overrightarrow{j}\) అయిన P + Q పరిమాణం కనుక్కోండి. [Imp.Q]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 4

ప్రశ్న 7.
శూన్య పరిమాణం కలిగిన సదిశకు శూన్యం కాని అంశాలు ఉంటాయా?
జవాబు:
ఉండవు. శూన్య పరిమాణం గల ఒక సదిశ శూన్యేతర అంశాలు కలిగి ఉండదు.

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 8.
ప్రక్షేపకం యొక్క ప్రక్షేప పథం అగ్రభాగంలో దాని త్వరణం ఎంత? [AP, TS 19]
జవాబు:
ప్రక్షేపకం యొక్క పధంలో శిఖరం వద్ద దాని త్వరణం గురుత్వ త్వరణం (g) 9.8ms-2.

ప్రశ్న 9.
రెండు అసమ పరిమాణం ఉన్న సదిశల సంకలనం మొత్తం శూన్య సదిశను ఇవ్వగలదా? మూడు అసమాన సదిశలు కలిసి శూన్య సదిశను ఇవ్వగలవా?
జవాబు:
కాదు. రెండు అసమాన పరిమాణం గల సదిశలను సంకలనం చేసినపుడు అది శూన్యసదిశను ఇవ్వదు. కాని ఆ మూడు సదిశలు ఒకే తలంలో ఉండి, వానితో ఒక త్రిభుజము నిర్మించగల్గితే, ఆ అసమ సదిశల మొత్తం శూన్యమవుతుంది.

Short Answer Questions (స్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
సదిశల సమాంతర చతుర్భుజ నియమాన్ని పేర్కొనండి. ఫలిత సదిశ పరిమాణం, దిశలకు సమీకరణం రాబట్టండి. [AP 20,22] [TS 16,17,20,22]
జవాబు:
సమాంతర చతుర్భుజ నియమం: రెండు సదిశలను పరిమాణంలోను, దిశలోను ఒక బిందువు నుంచి గీసిన సమాంతర చతుర్భుజం యొక్క రెండు ఆసన్న భుజాలతో సూచిస్తే, ఆ బిందువు గుండా పోయే కర్ణం, పరిమాణంలోను, దిశలోను ఆ రెండు సదిశల ఫలిత సదిశను సూచిస్తుంది.

వివరణ :
పటములో సూచించిన విధముగా, ‘O’ అనే ఒక ఉమ్మడి
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 5

ఫలిత సదిశ \(\overrightarrow{R}\) యొక్క పరిమాణం :
లంబకోణ త్రిభుజం ∆COD, నుండి OC² = OD² + CD²
⇒ OC² = (OA + AD)² + CD² (Since, OD = OA + AD)
⇒ OC² = OA² + AD² + 20A. AD + CD² ⇒ OC² = OA² + (AD² + CD²) + 20A.AD ……(1)
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 6
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 7

ప్రశ్న 2.
సాపేక్ష చలనం అంటే ఏమిటి? వివరించండి.
జవాబు:
సాపేక్షవేగము :
ఒక వస్తువు వేగంతో పోల్చినపుడు మరొక వస్తువు వేగాన్ని ఆ రెండింటి మధ్యగల సాపేక్ష వేగం అంటారు.
A, B అనే రెండు వస్తువులు VA మరియు VB వేగాలు కలిగియున్నాయనుకొనుము.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 8

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 3.
ఒక పడవ నదిని కనిష్ఠ కాలంలో దాటడానికి, ప్రవాహ దిశకు 90° ల కోణంలో ప్రయాణించాలని చూపండి.
జవాబు:
నది ఒక ఒడ్డున A అనే బిందువు వద్ద పడవ బయలుదేరి, పటంలో చూపిన విధంగా రెండో ఒడ్డుకు చేరుకోవాలి.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 9

పై సమీకరణంలో హారం విలువ VR స్థిరము, (Vb, Vw లు స్థిరము కావున) కావున ‘t’ కనిష్టమవుతున్నపుడు AC కూడా కనిష్టమవుతుంది. AC యొక్క కనిష్ట విలువ AB. ఇది నది వెడల్పు ‘d’కు సమానం. ఇక్కడ Vw కు AB లంబంగా ఉంది. కావున పడవ నదిప్రవాహానికి లంబంగా (90) ల కోణంతో ప్రయాణించవలెను.

ప్రశ్న 4.
శూన్య సదిశ,ఏకాంక సదిశ మరియు స్థాన సదిశలను వివరించండి. [AP 15]
జవాబు:
శూన్య సదిశ (నల్ సదిశ) :
పరిమాణం శూన్యముగా గల సదిశను శూన్య సదిశ అంటారు.
దీనిని \(\overline{\mathrm{0}}\) తో సూచిస్తారు. దాని దిశ అనిశ్చితం.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 10

ఏకాంక సదిశ (లేదా) ప్రమాణ సదిశ :
పరిమాణం ఏకాంకముగా గల సదిశను ఏకాంక సదిశ అంటారు.
ā అనేది శూన్యేతర సదిశ అయితే ā సదిశ దిశలోని ప్రమాణ సదిశను â తో సూచిస్తాము.
ā అనేది శూన్యేతర సదిశ అయితే దాని ఏకాంక సదిశ â = \(\frac{\overline{\mathrm{a}}}{|\bar{a}|}\)

స్థాన సదిశ :
O ఒక నిర్ధేశిత బిందువు, P అంతరాళంలో ఒక బిందువైతే సదిశ \(\overline{\mathrm{OP}}\) ను O బిందువు పరంగా P యొక్క స్థానసదిశ అంటారు.

‘P’ అనే బిందువు యొక్క నిరూపకాలు (x,y,z) మరియు ‘O’ అనునది నిరూపక జ్యామితి యొక్క మూల బిందువు AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 11

ప్రశ్న 5.
\(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|\) అయితే \(\overrightarrow{a}\) మరియు \(\overrightarrow{b}\) ల మధ్య కోణం 90° అని నిరూపించండి ? [Imp.Q] [AP 19][TS 18,22]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 12

ప్రశ్న 6.
క్షితిజ సమాంతర దిశకు కొంత కోణం చేస్తూ విసిరిన వస్తువు (ప్రక్షిప్త) పథం పరావలయం అని చూపండి. [Imp.Q][IPE’ 13, 14][AP 15, 16, 17, 18][TS 15, 16, 18, 22]
జవాబు:
ప్రక్షేపకం :
ఏదైనా ఒక వస్తువును క్షితిజానికి కొంత కోణం θ తో (θ + 90°) విసిరితే దానిని ప్రక్షేపక వస్తువు అని, ఆ మార్గాన్ని ప్రక్షేపక మార్గం అని అంటారు.
ఉదా : క్రికెట్ ఆటలో బాట్స్మన్ కొట్టిన సిక్సర్.

ప్రక్షేపక వస్తువు పథం పరావలయం :
ఒక వస్తువును ‘u’ తొలివేగంతో బిందువునుండి క్షితిజానికి కొంతకోణంతో ప్రక్షిప్తం చేసారనుకొందాము. అప్రక్షేపక వస్తువు వేగం ‘u’ రెండు అంశాలుగా విభజింపబడును.

క్షితిజ సమాంతరాంశం ux = ucosθ, క్షితిజ లంబాంశం uy = usinθ
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 13
t కాలంలోప్రక్షేపక వస్తువు ప్రయాణించిన
క్షితిజ సమాంతర స్థాన భ్రంశం
x : క్షితిజ సమాంతర వేగం × కాలం = ucosθ x t
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 14
కావున ప్రక్షేపక వస్తుపథం పరావలయం అవుతుంది.

ప్రశ్న 7.
సగటు వేగము, తక్షణ వేగములను వివరించండి. అవి ఎప్పుడు సమానమగును? [AP 19]
జవాబు:
సగటు వేగము :
“మొత్తం స్థానభ్రంశం” మరియు “మొత్తం ప్రయాణించిన కాలము” ల నిష్పత్తిని సగటు వేగం అంటారు. ఒక వస్తువు ‘t’ కాలంలో పొందిన స్థానభ్రంశం ‘s’ అయితే దాని సగటు వేగం = \(\frac{s}{t}\) అవుతుంది.

తక్షణ వేగము :
వస్తువు ప్రయాణించుచున్నపుడు, ఏ క్షణంలోనైనా వస్తువుకు ఉండే వేగాన్ని తక్షణ వేగం అని అంటారు. ఉదా: మోటార్ సైకిల్ యొక్క స్పీడోమీటరు తక్షణ వేగం యొక్క పరిమాణమును సూచించును.
∆t కాల వ్యవధిలో వస్తువు స్థానభ్రంశం ∆s అయితే దాని తక్షణ వేగం
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 15
వస్తువు సమవేగంతో ప్రయాణించుచున్నపుడు సగటు వేగం, తక్షణ వేగం సమానమగును.

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 8.
ప్రక్షిప్తం చేసిన వస్తువు యొక్క గరిష్టోన్నతి మరియు వ్యాప్తికి సమీకరణాలు \(\frac{\mathbf{u}^2 \sin ^2 \theta}{2 g}, \frac{u^2 \sin 2 \theta}{g}\) రాబట్టండి. [Imp.Q]
జవాబు:
గరిష్టోన్నతి :
ప్రక్షిప్త వస్తువు క్షితిజ లంబ వేగాంశం శూన్యం అయ్యేవరకు అది ఊర్ధ్వ దిశలో క్షితిజ లంబంగా చేరుకోగల ఎత్తును దాని గరిష్టోన్నతి అంటారు.
ఒక వస్తువును ‘u’ తొలివేగంతో క్షితిజ సమాంతరానికి ‘θ’ కోణంతో ప్రక్షిప్తం చేసినారు.
తొలివేగాంశం u = usinθ
గరిష్టోన్నతి వద్ద తుదివేగం v = 0
త్వరణం a = −g.
చలన సమీకరణం v² – u² = 2as నుండి 0 – (usinθ)² = -2ghmax
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 16

ప్రశ్న 9.
ఒక నిర్దేశ చట్రంలో వస్తువు ప్రక్షిప్త పథం పరావలయం అయితే, ఈ నిర్దేశ చట్రంతో సాపేక్షంగా స్థిరవేగంతో కదులుతున్న మరొక నిర్ధేశ చట్రంలో కూడా వస్తువు పథం పరావలయ ఆకృతిలో ఉంటుందా? ఒకవేళ ప్రక్షేపక పథం పరావలయం కాకపోతే అది ఏ ఆకృతిలో ఉంటుంది?
జవాబు:
మొదటి నిర్దేశ చట్రములో వస్తువు క్షితిజ సమాంతర వేగమునకు సమానమైన వేగముతో దానికి సమాంతరముగా రెండవ నిర్దేశ చట్రము ప్రయాణించుచున్నదనుకొనుము. అపుడు సమాన కాల వ్యవధులలో క్షితిజ సమాంతర దిశలో అవి ప్రయాణించిన దూరములు సమానముగా ఉండును. కనుక వస్తువు క్షితిజ సమాంతరముగా ప్రయాణించలేదు అన్న భావన రెండవ నిర్దేశ చట్రము లోని వ్యక్తికి కలుగును. కాని వస్తువు నిట్ట నిలువు తలములో పైకి పోయి క్రిందికి వచ్చినట్లుగా (అనగా నిట్టనిలువుగా పైకి విసిరిన వస్తువు వలె) అనిపించును.

ప్రశ్న 10.
విరామ స్థితిలో గల వస్తువు పై \(2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{j}\) న్యూటను బలము పని చేయుచున్నది. 20 సెకనుల తరువాత ఆ వస్తువు వేగం \(4\overrightarrow{i}+2\overrightarrow{j}-2\overrightarrow{j}\)ms-1. అయిన ఆ వస్తువు ద్రవ్యరాశి ఎంత?
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 17

Solved Problems (సాధించిన సమస్యలు)

ప్రశ్న 1.
నిలువుగా క్రింది దిశలో వాన 35 మీ. సె-1 వేగంతో కురియుచున్నది. కొంత సేపటికి గాలి 12 మీ. సె-1 వేగంతో తూర్పు నుండి పడమర దిశలో వీచుట ఆరంభించినది. అయిన ఒక పిల్లవాడు వానలో తడవకుండ ఉండుటకు ఏ దిశలో గొడుగు పట్టుకొని ఉండవలయును. [TS 15]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 18
వాన వేగము vr తోను, గాలి వేగమును vw తో సూచించిన R
వాని ఫలిత దిశను సూచించును.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 19
కనుక పిల్లవాడు నిలువు తలములో నిట్ట నిలువు క్రింది దిశకు 19° కోణముతో (తూర్పుదిశకు గొడుగు పట్టు కొనవలయును.

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 2.
నిలువుగా క్రింది దిశలో 35ms వేగంతో వాన కురియుచున్నది. ఒక స్త్రీ తూర్పు నుండి పడమర దిశలో 12ms-1 వేగంతో సైకిలు తొక్కుచున్నది. ఆమె తడవకుండ ఉండుటకు గొడుగును ఏ దిశలో పట్టుకొనవలయును. [Imp.Q]
సాధన:
వాన వేగం vr, సైకిల్ వేగం vb. నేలతో పోల్చినపుడు వాన వేగం, vr = 35 మీ/సె. నేలతో పోల్చినపుడు సైకిల్ వేగం, vb = 12 మీ/సె సైకిల్ (స్త్రీ) తో పోల్చినపుడు వాన వేగం vrb = vr – vb.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 20
vrb దిశలో వాన కురియుచున్నట్లుగా ఆమెకు అనిపించును. అందువలన ఆ దిశలో గొడుగు పట్టుకున్నచో ఆమె తడవదు. vrb నిలువుగా క్రింది దిశకు θ కోణం చేయుచున్నది అని అనుకున్నచో
tan θ = \(\frac{v_b}{v_r}=\frac{12}{35}\) = 0.343 ⇒ θ = Tan-1(0.343) = 19°
అనగా నిలువుగా క్రింది దిశకు పడమర వైపుగా 19° కోణంతో ఆమె గొడుగును పట్టుకొనవలయును.

ప్రశ్న 3.
ఒక కణము యొక్క స్థానమును సూచించు సమీకరణము r = \(3.0t\overline{\mathrm{i}}+2.0t^2\overline{\mathrm{j}}+5.0\overline{\mathrm{k}}\). ఇందులో t కాలమును సూచించును. t సెకనులలోను, మీటర్లలోను ఉన్నవి. (a) v(t) మరియు a(t) లను కనుగొనుము. (b) t = 1.0సె వద్ద కణము యొక్క వేగం v(t) పరిమాణము, దిశను కనుగొనుము.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 21

ప్రశ్న 4.
45° కోణమునకు సమానముగా ఎక్కువ లేక తక్కువగా ఉన్న ప్రక్షిప్త కోణములకు వ్యాప్తులు సమానమని చూపుము.
సాధన:
ఒక ప్రక్షేపకుమును v0 వేగముతో క్షితిజ సమాంతర దిశకు θ0 కోణముతో ప్రక్షిప్తం చేసిన దాని వ్యాప్తి
అనగా R = \(\frac{v_0^2 \sin \left(2 \theta_0\right)}{\mathrm{g}}\)
θ0 = (45° + α) లేక (45° – α) అయినపుడు 2θ0 = (90° + 2α) లేక (90° – 2α) అగును.
sin(90° + 2α) = cos2α మరియు sin(90° – 2α) = cos2α
అనగా R విలువ (45° + α), (45° – α) ప్రక్షిప్త కోణములకు సమానం.
కావున 45° కి ఇరువైపులా సమాన స్థాయిలో ఎక్కువ లేదా తక్కువ ఉన్నతాంశాల వ్యాప్తి సమానం.

ప్రశ్న 5.
క్షితిజ సమాంతరమునకు 30° కోణముతో ఒక వస్తువును 28 మీ/సె. వేగంతో ప్రక్షిప్తము చేసిరి. (a) వస్తువు గరిష్టోన్నతిని (b) వస్తువు మరల క్షితిజ సమాంతర తలము వచ్చుటకు పట్టుకాలమును (c) విసిరిన బిందువు నుండి వస్తువు క్షితిజ సమాంతర తలమును తాకిన బిందువు వరకు గల దూరమును (వ్యాప్తి) కనుగొనుము.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 22

Exercise Problems

ప్రశ్న 1.
ఓడ A, ఓడ B నకు పడమటి వైపున 10 కి.మీ దూరంలో ఉన్నది. ఓడ A ఉత్తర దిశలో 30 కి.మీ/గం. వేగంతో ప్రయాణించుచున్నది. ఓడ B ఉత్తరము నుండి పడమర వైపునకు 60° చేయు దిశలో 20 కి.మీ/గం. వేగంతో, ప్రయాణించుచున్నది.
(i) ఓడ Aతో పోల్చిన ఓడ B యొక్క వేగ పరిమాణమును, దిశను
(ii) ఒక దానినొకటి సమీపించు కనిష్ట దూరమును కనుక్కోండి.
సాధన:
A, B లు X- అక్షము పై పటములో చూపినట్లు 10 కి.మీ దూరములో ఉన్నవనుకొనుము.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 23

A తో పోల్చినపుడు B యొక్క సాపేక్ష వేగం అనగా A విరామ స్థితిలో ఉన్నదనుకుంటే B యొక్క వేగము.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 24
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 25

A నుండి సాపేక్ష వేగదిశకు గీచిన లంబము పొడవు అవి ఒకదానికొకటి సమీపించు కనిష్ట దూరమునకు సమానం. పటము నుండి, కనిష్ట దూరం,
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 26

ప్రశ్న 2.
ప్రక్షిప్త కోణం θ వ్యాప్తి R, గరిష్ట ఎత్తు h, గమన కాలం T అయితే (a) tanθ = \(\frac{4h}{R}\) (b) = \(\frac{gT^2}{8}\) అని చూపండి.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 27

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 3.
క్షితిజ సమాంతరంతో 60° కోణం చేస్తూ 800మీ/సె తొలి వేగంతో ఒక ప్రక్షేపకాన్ని పేల్చారు.
(i) భూమిని తాకే ముందు ప్రక్షేపకం ప్రయాణ కాలం కనుక్కోండి.
(ii) అది భూమిని తాకే ముందు ప్రయాణించిన దూరాన్ని (వ్యాప్తి)ని కనుక్కోండి. (iii) గరిష్ఠ ఎత్తుకు చేరుకోవడానికి పట్టే ప్రయాణ కాలాన్ని కనుక్కోండి.
సాధన:
ప్రక్షిప్త కోణం, θ = 60°
ప్రక్షిప్త వేగం, u 800 మీ-1.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 28

ప్రశ్న 4.
నేలపై ఒక బిందువు నుండి ఒక వస్తువును క్షితిజ సమాంతర దిశకు కొంత కోణముతో ప్రక్షిప్తము చేసిరి. వస్తువు గరిష్ట ఎత్తును చేరినపుడు దాని స్థాన సదిశ పరిమాణము (ప్రక్షిప్త బిందువు మూల బిందువుగా తీసుకున్నపుడు) గరిప్టోన్నతికి √2 రెట్లు ఉన్న ప్రక్షిప్త కోణం Tan-1(2) అని చూపండి.
సాధన:
గరిష్ట ఎత్తు P వద్ద ఉన్నదనుకొనుము. P బిందువు నిరూపకములు (R/2, h) అవుతాయి.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 29

ప్రశ్న 5.
నేల పై నుండి 20 మీ. ఎత్తులో గల శిఖరం నుండి క్షితిజ సమాంతర దిశకు 30° కోణంతో ఒక వస్తువును 30 మీ/ సె. వేగంతో ప్రక్షిప్తం చేసిన నేలను తాకు లోపల అది క్షితిజ సమాంతరముగా ప్రయాణించు దూరం ఎంత? (g = 10 m/s²)
సాధన:
క్షితిజ సమాంతరముగా ప్రయాణించిన మొత్తం దూరం, R = R1 + R2.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 30

B బిందువు వద్ద క్షితిజ లంబ వేగము (u) = usinθ = 30 × sin30° = 30 × \(\frac{1}{2}\) = 15 ms-1
త్వరణం (a) = g = 10 మీసె-2; ప్రయాణించిన దూరం (s) = 20 మీ, కాలం (t) = ?
s = ut + \(\frac{1}{2}\)at² ⇒ 20 = 15 × t + \(\frac{1}{2}\) × 10 × t² ⇒ 20 = 15t + 5t² ⇒ 5t² + 15t – 20 = 0
⇒ t² + 3t-4 = 0 ⇒ t² + 4t – t – 4 = 0 ⇒ t(t+4)-1(t+4) = 0
⇒ (t + 4)(t – 1) = 0 = t = 1s (t = -4 కాలం ఋణాత్మకం కాదు కాబట్టి) t = 1s
1 సెకనులో క్షితిజ సమాంతర దిశలో ప్రయాణించిన దూరం,
R2 = ucosθ × t = 30 cos30° × 1 = 30 × \(\frac{\sqrt3}{2}\) = 15√3m
∴ మొత్తం క్షితిజ సమాంతర దూరం R = R1 + R2 = 45√3 + 15√3 = 60√3 m

ప్రశ్న 6.
నేల పై O అను బిందువు మూల బిందువు ఒక వస్తువు 0 నుండి మొదటి ఈశాన్యదిశలో 10√2m స్థానభ్రంశమును, తరువాత ఉత్తర దిశలో 10 మీ, చివరకు వాయవ్య దిశలో 10√2m స్థానభ్రంశము పొందిన చిట్ట చివరకు వస్తువు మూల బిందువు నుండి ఏ దిశలో, ఎంత దూరములో ఉన్నది. [TS 19]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 31
∴ కాబట్టి O నుండి ఉత్తర దిశలో 30మీ దూరములో వస్తువు ఉన్నది.

ప్రశ్న 7.
ఒక వస్తువును నేల పై నుండి వేగంతో వ్యాప్తి గరిష్టముగా ఉండు రీతిలో ప్రక్షిప్తం చేసిరి. గరిష్టాన్నతిని చేరు లోపల వస్తువు సగటు వేగం ఎంత? అనగా ఆరోహణ కాలంలో దాని సగటు వేగం ఎంత?
సాధన:
గరిష్ట వ్యాప్తికి, ప్రక్షిప్త కోణం= 45°.
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 32

ప్రశ్న 8.
క్షితిజ సమాంతర దిశకు 45° కోణంతో ఒక వస్తువును కొంత వేగంతో ప్రక్షిప్తం చేసిరి. ప్రక్షిప్త బిందువు నుండి క్షితిజ సమాంతర దిశలో 10 మీ. దూరం ప్రయాణించునప్పటికి, క్షితిజ లంబదిశలో అది 7.5 మీ ఎత్తులో ఉన్నది. దాని ప్రక్షిప్త వేగం ఎంత? (g=10m/s2).
సాధన:
ప్రక్షిప్త వేగము u అనుకొనుము
క్షితిజ సమాంతర దిశలో 10మీ. దూరము ప్రయాణించుటకు పట్టిన కాలం t అనుకొనుము.
కాని క్షితిజ సమాంతర దిశలో ప్రయాణించిన దూరం = క్షితిజ సమాంతర వేగాంశం × కాలం
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 33

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 9.
గాలి దక్షిణం వైపు నుండి 5 మీ/సె. వేగంతో వీచుచున్నది. సైకిల్ పై వెళ్ళుచున్న వ్యక్తికి ఆ వాన తూర్పు నుండి 5 మీ/సె వేగంతో వీచుచున్నట్లు అనిపించిన ఆ వ్యక్తి సైకిల్ పై ఈశాన్యదిశలో 5/2 మీ/సె. వేగంతో వెళ్ళుచున్నాడని చూపండి.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 34

AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం

ప్రశ్న 10.
నేలపై 4 మీ/సె వేగంతో నడుచుచున్న వ్యక్తికి వర్షపు బిందువులు క్షితిజ లంబదిశకు 30° కోణంతో అతని ముఖం పై 4 మీ/సె. వేగంతో తాకుచున్నట్లు అనిపించిన వర్షపు బిందువుల నిజ వేగం 4 మీ/సె అని చూపండి.
సాధన:
వ్యక్తితో పోల్చిన వాన వేగం = VRM = 4 మీసె-1
నేలతో పోల్చిన వ్యక్తి వేగం = VMG = 4 మీసె-1
నేలతో పోల్చిన వాన వేగం = VRG = ?
(వాన నిజ వేగం)
AP Inter 1st Year Physics Important Questions Chapter 4 సమతలంలో చలనం 35

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

Students get through AP Inter 1st Year Physics Important Questions 3rd Lesson సరళరేఖాత్మక గమనం which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 3rd Lesson సరళరేఖాత్మక గమనం

Very Short Answer Questions (అతిస్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
గమన, నిశ్చల స్థితులు సాపేక్షము. వివరించండి. [Imp.Q]
జవాబు:
రైలులో ప్రయాణిస్తున్న వ్యక్తికి, తోటి ప్రయాణికుడు విశ్రాంతి స్థితిలో ఉన్నట్లుగా ఉండును. భూమి మీది చెట్లు, భవంతులు మొదలైనవి చలన స్థితిలో ఉన్నట్లుగా అనిపించును. కాని భూమిపై నిల్చున్న వ్యక్తికి, ప్రయాణికులు చలన స్థితిలో ఉన్నట్లుగా, చెట్లు, భవంతులు మొదలైనవి విశ్రాంతి స్థితిలో ఉన్నట్లుగా అనిపించును. కావున చలన స్థితి, విశ్రాంతి స్థితి సాపేక్షము.

ప్రశ్న 2.
సగటు వేగము ఏ విధంగా తత్కాల వేగముతో విభేదిస్తుంది? [Mar 13][AP 17]
జవాబు:
కొంత కాల వ్యవధిలో ఒక వస్తువునకు సగటు వేగము కనుగొనినప్పుడు, ఆ కాల వ్యవధిలో ఏదైనా ఒక క్షణము వద్ద ఆ వస్తువు ఎంత వేగముతో ప్రయాణించుచున్నది అన్న విషయం సగటు వేగం వలన తెలియదు. ఆ వస్తువు వేగ దిశ కూడ తెలియదు. కాని తక్షణ వేగం వలన ఆ వస్తువు (ఏ క్షణమున అయిన) ఏ దిశలో ప్రయాణించుచున్నది మరియు ఎంత వడితో ప్రయాణించుచున్నది అన్న విషయం తెలియును.

ప్రశ్న 3.
వస్తువు వేగం శూన్యమై దాని త్వరణం శూన్యం కాని సందర్భానికి ఒక ఉదాహరణ ఇవ్వండి. [AP 17][Mar 13]
జవాబు:
ఒక వస్తువును నిట్టనిలువుగా పైకి విసిరినపుడు, గరిష్ట ఎత్తు వద్ద వస్తువు వేగం శూన్యమగును. కాని వస్తువు నకు త్వరణము ఉండును. అది గురుత్వత్వరణం g నకు సమానం.

ప్రశ్న 4.
ఒక వాహనం ప్రయాణించిన దూరం L లో సగం దూరం వడి v1 తోను, రెండవ సగం దూరం వడి v2 తోను ప్రయాణించినది. ఆ వాహనం సగటు వడి ఎంత?
జవాబు:
L దూరమును v1 వడితో ప్రయాణించుటకు పట్టిన కాలం, t1 = \(\frac{L}{v_1}\)
L దూరమును v2 వడితో ప్రయాణించుటకు పట్టిన కాలం t2 = \(\frac{L}{v_2}\)
మొత్తము ప్రయాణించిన దూరం = L +L = 2L
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 1

ప్రశ్న 5.
క్రింది దిశలో ప్రయాణిస్తూ ఒక లిఫ్టు భూఅంతస్తుకు చేరబోతున్నది. భూ అంతస్తును మూల బిందువుగానూ, ఊర్ధ్వ దిశను ధన దిశగానూ అన్ని రాశులకూ ఎంపిక చేసుకొంటే క్రింది ఇచ్చిన వాటిలో ఏది సరియైనది?
(a) x<0, v<0, a>0
(b) x>0, v<0, a<0 (c) x>0, v<0, a>0
(d) x>0, v>0, a>0
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 2
x స్థాన భ్రంశమును సూచించును లిఫ్ట్ క్రిందికి వచ్చుచున్నది కనుక దాని తుది నిరూపకము, తొలి నిరూపకము కన్న తక్కువగా యుండును. స్థానభ్రంశం = తుది నిరూపకం తొలి నిరూపకం కనుక స్థానభ్రంశం (x) ఋణాత్మకం. అనగా x<0 లిఫ్ట్ వేగం క్రింది దిశలో ఉండును. ఊర్థ్వదిశ ధనాత్మకం కనుక లిఫ్ట్ వేగం (v) కూడ ఋణాత్మకం.
అనగా v<0 లిఫ్ట్ వేగం క్రమక్రమముగా తగ్గుచున్నది. అనగా తుది వేగం(v) కన్న తొలి వేగం (u) ఋణాత్మకముగా ఎక్కువగా ఉండును. కనుక (a) ధనాత్మకమగును. అనగా a> 0 ∴ (a) సరియైనది.

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 6.
సమరీతి గమనం గల ఒక క్రికెట్ బంతి చాలా స్వల్ప కాలంపాటు ఒక బ్యాట్తో కొట్టగా వెనకకు మరలింది. తిరోదిశలో త్వరణాన్ని ధనాత్మకంగా తీసుకొని కాలంపరంగా త్వరణంలో మార్పుకు గ్రాఫ్ గీయండి.
జవాబు:
కాలం(t) ను x అక్షము పై, త్వరణం (a) ను y అక్షము పై తీసుకొనుము. కాలముతో బంతి త్వరణము మారుట ఈ క్రింది విధముగా ఉండును.
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 3

ప్రశ్న 7.
ధన x – అక్షము దిశలో ప్రయాణించుచు, నిర్ణీత (వ్యవధులలో) లేక ఆవర్తనముగా కాలముల వద్ద వేగం శూన్యమవుతూ, మునుముందుకు ప్రయాణించు ఏక మితీయ చలనమునకు ఉదాహరణ ఇవ్వండి.
జవాబు:
వస్తువు ప్రయాణించిన దూరం x నకు, కాలం” నకు మధ్య గల సంబంధం x = t-sint అనుకొనుము
అపుడు వేగం, (v) = \(\frac{dx}{dt}\) = 1 – cost అగును.

cost విలువ ఎల్లప్పుడూ 1 లేక 1 కంటే తక్కువగా ఉండును. కనుక v ధనాత్మకంగా ఉండును. అనగా వస్తువు ధన X- అక్షము దిశలో ప్రయాణించుచుండును.

cost = 1 అయినపుడు v=0 అగును అనగా వస్తువు వేగం ఆవర్తనముగా శూన్యమగుచుండును.

ప్రశ్న 8.
ఒక ప్రవాహిలో పతనం చెందే ఒక వస్తువు a = g-bv త్వరణం కలిగి ఉందని పరిశీలించడం జరిగింది. ఇందులో g గురుత్వ త్వరణం, b ఒక స్థిరాంకం. కొంత కాలం గడిచిన తరువాత ఆ వస్తువు స్థిర వేగముతో పతనం చెందుతుందని తెలుసుకొన్నారు. ఆ స్థిరవేగం విలువ ఎంతై ఉండవచ్చు?
జవాబు:
వస్తువు వేగం స్థిరమయినపుడు, దాని త్వరణం a=0 అగును. కావున ⇒ g-bv = 0 ⇒ bv = g (or) v = g/b
∴ వస్తువు స్థిర వేగం v = \(\frac{g}{b}\)

ప్రశ్న 9.
ఒక నిర్దేశ చట్రములో ఒక వస్తువు పథము పరావలయము. ఆ నిర్దేశ చట్రమునకు సమాంతరముగా సమ వేగంతో ప్రయాణించు వేరొక నిర్దేశ చట్రము నుండి చూచినపుడు, ఆ వస్తువు పథము పరావలయమగునా? కానిచో, ఆ పథము ఏమిటి?
జవాబు:
మొదటి నిర్దేశ చట్రములో వస్తువు క్షితిజ సమాంతర వేగమునకు సమానమైన వేగముతో దానికి సమాంతరముగా రెండవ నిర్దేశ చట్రము ప్రయాణించుచున్నదనుకొనుము. అపుడు సమాన కాల వ్యవధులలో క్షితిజ సమాంతర దిశలో అవి ప్రయాణించిన దూరములు సమానముగా ఉండును. కనుక వస్తువు క్షితిజ సమాంతరముగా ప్రయాణించలేదు అన్న భావన. రెండవ నిర్దేశ చట్రములోని వ్యక్తికి కలుగును. కాని వస్తువు నిట్ట నిలువు తలములో పైకి పోయి క్రిందికి వచ్చినట్లుగా (అనగా నిట్టనిలువుగా పైకి విసిరిన వస్తువు వలె) అనిపించును.

ప్రశ్న 10.
ఒక ధృడ ఆధారము నుండి ఒక స్ప్రింగ్ను వ్రేలాడదీసి రెండవ చివర ఒక వస్తువును తగిలించిరి. ఇపుడు వస్తువును క్రిందికి లాగి వదిలిన దాని త్వరణం ఎప్పుడు గరిష్టంగా ఉండును?
జవాబు:
వస్తువు సరళ హరాత్మక చలనంలో ఉండును. సరళహరాత్మక చలనములో చరమ స్థానముల వద్ద గరిష్ట త్వరణం ఉండును. కనుక వస్తువునకు చరమ స్థానముల వద్ద గరిష్ట త్వరణం ఉండును.

Short Answer Questions (స్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
త్వరణము కాలముతోపాటు మారుతూ ఉన్నప్పుడు శుద్ధగతిక శాస్త్రంలోని సమీకరణాలను ఉపయోగించవచ్చా? ఉపయోగించుటకు వీలులేకపోతే ఆ సమీకరణాలు ఏ రూపాన్ని సంతరించుకొంటాయి?
జవాబు:
కాలముతో త్వరణము మారుచున్నపుడు, చలన సమీకరణములు v = u + at, s = ut + \(\frac{1}{2}\)at² sn = u + a(n – \(\frac{1}{2}\)) మొదలైన

వానిని ఉపయోగించలేము. ఎందువలన అనగా ఇక్కడ a అనునది సమత్వరణం. అనగా కాలముతో మార్పుచెందనిది. కాలము (t) తో త్వరణం (a) ఈ క్రింది విధంగా మారుచున్నదనుకొనుము. a ∝ tn
అనగా a = ktn కాని a = \(\frac{dv}{dt}\) = ktn = dv = ktn dt …..(1)
t = 0 అయినపుడు v = u (తొలి వేగం) మరియు t = t అయినపుడు v = v (తుది వేగం) అనుకొనుము
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 4

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 2.
v – t గ్రాఫ్ నుండి S = ut + \(\frac{1}{2}\)at² అనే సమీకరణం రాబట్టండి. [TS 19]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 5
వస్తువు సమత్వరణంతో గమనం చేయుచున్నప్పుడు వేగం కాలం వక్రం పటంలో చూపబడింది.

వేగం-కాలం వక్రం యొక్క మధ్య వైశాల్యం వస్తువు యొక్క స్థానభ్రంశాన్ని సూచిస్తుంది.
0 నుండి t మధ్య గల వైశాల్యం = త్రిభుజం ABC వైశాల్యం + దీర్ఘచతురస్రం OACD వైశాల్యం
S = \(\frac{1}{2}\)(v – u)t + ut
S = \(\frac{1}{2}\)(at)t + ut (∵ v – u = at)
S = \(\frac{1}{2}\)at² + ut ∴ S = ut + \(\frac{1}{2}\)at²

ప్రశ్న 2.
ఒక కణము ఒక సరళ రేఖా మార్గములో సమత్వరణముతో ప్రయాణించుచున్నది. కాలం t = 0 వద్ద దాని వేగం v1 మరియు కాలం t = t వద్ద దాని వేగం v2 అయిన ఈ కాల వ్యవధిలో దాని సరాసరి వేగం \(\frac{v_1+v_2}{2}\) ఇది నిజమా? సరియైనదేనా? మీ సమాధానానికి తగిన వివరణ ఇవ్వండి.
జవాబు:
సరియైనదే.
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 6
⇒ స్థానభ్రంశము = సగటు వేగం × కాలం. ఇది సత్య సంబంధం
కావున ఇచ్చిన దత్తాంశం సరియైనదే.

ప్రశ్న 3.
ఒక కణం వేగ దిశ, కణ త్వరణ దిశతో పోల్చితే వేరుగా ఉండవచ్చా? అవును అయితే ఉదాహరణ ఇవ్వండి. [TS 22]
జవాబు:
ఉండవచ్చును.
ఉదా: ఒక వస్తువు సమ వృత్త చలనములో ఉన్నపుడు, దాని వేగం దిశ, స్పర్శరేఖ దిశలో ఉండును. కాని త్వరణం వృత్త కేంద్రం వైపు ఉండును.

ప్రశ్న 4.
ఎగురుతూ ఉన్న విమానం నుండి పారాచూట్ సహాయంతో ఒక వ్యక్తి భూమి నుండి 3 కి.మీ ఎత్తు నుంచి దూకాడు. అతడు భూమి నుంచి 1 కి.మి ఎత్తులో ఉన్నప్పుడు పారాచూట్ పూర్తిగా విప్పాడు. అతడి గమనాన్ని వివరించండి. [TS 17]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 7
విమానము నుండి వ్యక్తి క్రిందికి దూకినపుడు, గురుత్వాకర్షణ బలం వలన అతని వేగం పెరుగుచుండును. కాని అదే సమయములో గాలి పై దిశలో ప్రయోగించు నిరోధ బలం మరియు స్నిగ్ధతా బలముల వలన అతని వేగం తగ్గుటకు ప్రయత్నము జరుగును. ఈ వ్యతిరేక బలములు అతని వేగం పెరుగుచున్నకొలది పెరుగుచుండును. కావున అతనిపై పనిచేయుచున్న గురుత్వాకర్షణ బలం, వ్యతిరేక బలములు సమానమైనచో అతను ఒక స్థిర వేగమును పొందుటకు అవకాశము కలదు.

ఒక వేళ కానిచో భూమి నుండి 1 కి.మీ. ఎత్తులో అతను పారాచ్యూట్ విప్పినపుడు గాలి అతనిపై చూపు నిరోధ బలం అకస్మాత్తుగా చాలా అధికముగా పెరుగును. కొంత దూరము ప్రయాణించినప్పటికి, అతనిపై పనిచేయు గురుత్వాకర్షణ బలం, నిరోధ బలములు సమానమై అతను ఒక స్థిర వేగమును పొంది క్షేమముగా నేల మీదకు దిగగలడు.

ప్రశ్న 5.
ఒక పక్షి తన ముక్కున ఒక పండును పట్టుకొని క్షితిజ సమాంతరముగా నేలకు కొంత ఎత్తులో ఎగురుచూ, ఆ పండును జార విడిచినది. ఆ పండు ప్రయాణించు మార్గము (a) పక్షికి (b) నేలపై ఉన్న ఒక వ్యక్తికి ఎట్లు కనిపించును? [TS 22]
జవాబు:
(a) పక్షికి ఆ పండు నిట్టనిలువుగా క్రిందికి ఒక సరళరేఖ మార్గములో పడుచున్నట్లు కనిపించును.
కారణం:
పండునకు, పక్షికి క్షితిజ సమాంతరముగా ఒకే వేగం ఉండును. కావున ఒక కాల వ్యవధిలో అవి క్షితిజ సమాంతరముగా ప్రయాణించిన దూరములు సమానముగా ఉండును. అందువలన పక్షికి పండు ఎల్లప్పుడూ దాని క్రిందనే ఉన్నట్లుగా అన్పించును.

(b) నేల పై ఉన్న వ్యక్తికి ఆ పండు పరావలయము మార్గములో నేలను తాకినట్లు అనిపించును.
కారణం:
పండునకు, క్షితిజ సమాంతర వేగం ఉన్నది. దానిలో మార్పు ఉండదు. గురుత్వాకర్షణ వలన నిట్టనిలువుగా క్రింది దిశలో గురుత్వ త్వరణం ఉండును. ఈ రెండింటి సంయోగము వలన ఆ పండు పరావలయ మార్గములో ప్రయాణించినట్లు కనిపించును.

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 6.
ఒక వ్యక్తి ఒక ఎత్తైన భవంతి కప్పుపై పరుగెత్తుచూ దాని ప్రక్కనే తక్కువ ఎత్తు గల భవంతి పైకి దూకెను. దూకుచున్నపుడు క్షితిజ సమాంతరముగా అతని వేగం 9 మీ/సె. రెండు భవంతుల మధ్య క్షితిజ సమాంతరముగా దూరం 10 మీ. మరియు రెండు భవంతుల ఎత్తుల మధ్య తేడా 9 మీ . అయిన అతడు రెండవ భవంతి పైకి దూకగలడా? (g = 10ms-2 అనుకొనుము) [TS 18]
జవాబు:
క్షితిజ సమాంతర దిశలో వ్యక్తి దూక గల దూరం 10 మీ కంటే ఎక్కువ అయినచో అతడు క్షేమముగా రెండవ భవంతి పైకి దూకగలడు. నిట్ట నిలువుగా క్రింది దశలో
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 8
వ్యక్తి తొలి వేగం (u) = 0
త్వరణం (a) = +g = + 10 మీ/సె²
ప్రయాణించిన దూరం (s) = భవంతుల ఎత్తుల మధ్య తేడా = 9 మీ
దానికి పట్టిన కాలం (t) = ?
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 9
క్షితిజ సమాంతరముగా దూకగల దూరం = వేగం × కాలం = 9 × 1.34 = 12.08 మీ ≅ 12.1 మీ
దూక గల దూరం సుమారుగా 12 మీ కాని భవంతుల మధ్య దూరం 10 మీ . కనుక అతను క్షేమంగా రెండవ భవంతిపైకి దూకగలడు.

ప్రశ్న 7.
ఒకే ఎత్తు నుంచి ఒక రాయిని క్రిందికి జారవిడిచారు. అదే సమయంలో మరొకటి క్షితిజ సమాంతరంగా విసిరితే వీటిలో ఏది ముందు నేలను తాకుతుంది? [Imp.Q][TS 15]
జవాబు:
క్రిందకి జారవిడిచిన రాయి:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 10
‘h’ ఎత్తునుండి జారవిడిచిన రాయి
తొలి వేగంu = 0, త్వరణం a = + g, స్థానభ్రంశము s = h
ప్రయాణ కాలం t1 అనుకొనుము ;
s = ut + \(\frac{1}{2}\)at² ⇒ h = 0 + \(\frac{1}{2}\)gt²1 ⇒ t1 = \(\sqrt{\frac{2h}{g}}\)

క్షితిజ సమాంతరంగా విసిరిన రాయి:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 11
‘h’ ఎత్తునుండి క్షితిజ సమాంతరంగా విసిరిన రాయి
తొలి లంభ వేగం uy =0, తొలి లంబ స్థానభ్రంశము s = h
లంబ త్వరణము ay = g,
ప్రయాణ కాలం t2 అనుకొనుము
s = ut + \(\frac{1}{2}\)at² ⇒ h = 0 + \(\frac{1}{2}\)gt²2 ⇒ t2 = \(\sqrt{\frac{2h}{g}}\)
As t1 = t2 కావున ఆ రెండు వస్తువులు ఒకేసారి నేలను తాకుతాయి.

ప్రశ్న 8.
ఒక భవంతి పై నుండి ఒక బంతిని స్వేచ్ఛగా జారవిడిచిరి. అదే సమయంలో కొంత వేగముతో ఇంకొక బంతిని భవంతి ప్రక్క నుండి పైకి విసిరారు. ఆ బంతుల సాపేక్ష వేగాలలో మార్పును కాలం ప్రమేయంగా వివరించండి.
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 12
‘A’ స్వేచ్ఛగా పడుచున్నది అనుకొనుము. ‘B’ ని u వేగంతో నిట్ట నిలువుగా
పైకి ప్రక్షిప్తం చేసితిరి అనుకొనుము కావున t = 0 వద్ద ‘A’ యొక్క వేగం = 0
‘B’ యొక్క వేగం = u
కావున ‘B’ తో పోల్చిన ‘A’ సాపేక్ష వేగం uAB = uA – uB = 0 – u = -u
కాలం గడచిన తరువాత ‘A’ యొక్క వేగం vA = u + at
VA = 0 + gt
VA = gt

‘B’ యొక్క వేగం VB = u – gt
ఇపుడు ‘B’ తో పోల్చిన ‘A’ సాపేక్ష వేగం VAB = VA – VB = gt – u + gt = 2gt – u
కావున t కాలములో సాపేక్ష వేగములోని తేడా = (2gt – u)-(-u) = 2gt – u + u = 2gt

ప్రశ్న 9.
ఒకానొక వర్షపు బిందువు వ్యాసము 4 మి.మీ. భూమి నుంచి 1కి.మీ ఎత్తులో గల మేఘము నుండి ఆ వర్షపు బిందువు జారిపడితే అది భూమిని ఎంత ద్రవ్య వేగంతో తాకుతుంది?
జవాబు:
తొలి వేగం (u) = 0;
(a) = g = 9.8ms-2
వర్షపు బిందువు నేలను తాకు లోపల ప్రయాణించు దూరం (s) = 1కి.మీ = 1000మీ; నేలను తాకునపుడు దాని వేగం,(v)=?
v² – u² = 2as ⇒ v = \(\sqrt{2gh}=\sqrt{2\times9.8\times1000}\) = 140ms-1
వర్షపు బిందువు వ్యాసము = 4 మి.మీ = 4 × 10-3మీ
వర్షపు బిందువు వ్యాసార్థం r = \(\frac{4mm}{2}\) = 2mm = 2 × 10-3m
వర్షపు బిందువు ఘనపరిమాణం, υ = \(\frac{4}{3}\)πr³ (వర్షపు బిందువు గోళాకారములో ఉండును)
υ = \(\frac{4}{3}\times\frac{22}{7}\) × (2 × 10-3)³ = 33.52 × 10-9
వర్షపు నీరు సాంద్రత (d) = 1000 కి.గ్రా/మీ³
∴ వర్షపు బిందువు ద్రవ్యరాశి, m = ఘన పరిమాణం × సాంద్రత= 33.52 × 10-9 × 1000 = 33.52 × 10-6కి.గ్రా
∴ వర్షపు బిందువు ద్రవ్యవేగం P = ద్రవ్యరాశి × వేగం = 33.52 × 10-6 × 140 = 4692 × 10-6 = 0.00469 కి. గ్రామీసె-1

ప్రశ్న 10.
క్షితిజంతో 45° కోణంతో ప్రక్షిప్తం చేసిన ప్రక్షేపకం చేరే గరిష్ట ఎత్తు దాని వ్యాప్తిలో నాలుగో వంతు ఉంటుందని చూపండి. [IPE ’14] [*Imp.Q][AP 16, 19]
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 13
ప్రక్షేపకం కోణం 45° ఉన్నప్పుడు గరిషోన్నతి విలువ దాని వ్యాప్తిలో 4వ వంతు ఉంటుంది.
గమనిక: ఈ సమస్య తర్వాతి చాప్టర్ సమతలంలో చలనంకు సంబంధించినది.

Exercise Problems

ప్రశ్న 1.
ఒక వ్యక్తి తన ఇంటి నుండి తిన్నని మార్గంలో 2.5 కి. మీ. దూరంలో ఉన్న మార్కెట్టుకు 5కి.మీ/గం. వేగంతో నడిచి వెళ్ళెను. మార్కెట్టు మూసి ఉండుట గమనించి వెంటనే 7.5 కి.మీ/గం. వేగంతో అదే తిన్నని మార్గములో ఇంటికి వచ్చెను. 0 నుండి 50 నిమిషాల కాల వ్యవధిలో అతని (a) సగటు వేగము (b) సగటు వడిని కనుక్కోండి [AP 18,19][TS 20]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 14

ప్రశ్న 2.
మొత్తము దూరములో మొదటి 1/3 వ వంతు దూరమును 10కి.మీ/గం. వడితోను, రెండవ 1/3 వ వంతు దూరమును 20 కి.మీ/గం. వడితోను, చివరి 1/3 వ వంతు దూరమును 60 కి.మీ/గం. వడితోను ఒక కారు ప్రయాణించిన, మొత్తము దూరము ప్రయాణించుటలో దాని సగటు వడి ఎంత? [AP 18, 22][IPE’14][TS 16, 18]
సాధన:
మొత్తము దూరం = 3S అనుకొనుము
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 15

ప్రశ్న 3.
150 మీ/సె. వేగంతో వెళ్ళుచున్న ఒక తుపాకి గుండు ఒక చెట్టు లోపలికి 3.5 సెం.మీ దూరము చొచ్చుకొని పోయి ఆగిపోయినది. అయిన చెట్టు లోపల తుపాకి గుండు సగటు ఋణ త్వరణం ఎంత? చెట్టు లోపల ఎంత కాలము అది ప్రయాణించి ఆగిపోయింది.? [May 13]
సాధన:
తుపాకి గుండు తొలి వేగము, (u) = 150 మీసె-1.

ఆగుటకు ముందు చెట్టు లోపల ప్రయాణించిన దూరం (s) = 3.5 సెం.మీ = 3.5 × 10-2 మీ
తుది వేగం (v) = 0; ఋణత్వరణం (-a) =?; ఆగుటకు పట్టు కాలం (t) = ?
v² – u² = 2as ప్రకారం (0)² – (150)² = 2 × a × 3.5 × 10-2.
– 22500 = 7 × a × 10-2 ⇒ a = \(\frac{-22500}{7\times10^{-2}}\) = -3.214 × 105ms-2
∴ ఋణ త్వరణం (−a) = 3.214 × 105 మీ సె-2.
v = u + at ప్రకారం 0 = 150 – 3.214 × 105 × t.
⇒ 3.214 × 105 × t = 150 ⇒ t = \(\frac{150}{3.214\times10^{5}}\) = 46.7 ×10-5 = 4.67 × 10-4 s

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 4.
మోటారు వాహనము పై ప్రయాణించు ఒక వ్యక్తి 85 కి.మీ/గం. వేగంతో ఉత్తరదిశలో 30 ని. ప్రయాణించి 15ని. విశ్రాంతి తీసుకొనెను. అతడు ఉత్తర దిశలోనే 2 గం. ప్రయాణించి 130 కి.మీ ప్రయాణించెను. మొత్తము స్థాన భ్రంశము ఎంత? మరియు సగటు వేగము ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 16
2 గంటలలో వ్యక్తి ప్రయాణించిన దూరం, S2 = 130 కి.మీ
వ్యక్తి ఒకే దిశలో అనగా ఉత్తర దిశలో ప్రయాణించెను కావున
మొత్తము ప్రయాణించిన దూరం = స్థాన భ్రంశం ⇒ s = 42.5 + 130 = 172.5 కి. మీ
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 17

ప్రశ్న 5.
ఒక భవనము పై నుండి A అను బంతిని స్వేచ్ఛగా వదిలిరి. అదే సమయములో భవనము క్రింది నుండి B అను బంతిని కొంత వేగము తో పైకి విసిరిరి. రెండు బంతులు కలుసుకున్నపుడు A వేగము B వేగమునకు రెట్టింపు ఉన్నది భవనము ఎత్తులో ఎంత భిన్నము వద్ద రెండు బంతులు కలుసుకున్నవి?
సాధన:
భవనము ఎత్తు H అనుకొనుము. భవనము అడుగు నుండి h ఎత్తులో C అను బిందువు వద్ద రెండు బంతులు కలుసుకున్న వనుకొనుము. A తొలి వేగం సున్న మరియు Bను u వేగంతో పైకి విసిరితిరి అని అనుకొనుము. స్వేచ్ఛగా పడుచున్న A విషయంలో, H – h = \(\frac{1}{2}\)gt² ………… (1)
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 18
u వేగంతో విసిరిన B విషయంలో, h = ut – \(\frac{1}{2}\)gt² ………… (1)
కలుసుకోవటానికి పట్టిన కాలం t మరియు A, B ల వేగాలు వరుసగా VA, VB అనుకొనుము.
అపుడు v = u + at ప్రకారం VA = gt మరియు VB = u – gt అగును
కాని లెక్క ప్రకారం VA = 2VB ⇒ gt = 2(u – gt) = 2u – 2gt ⇒ 2u = 3gt
(1) మరియు (2) సమీకరణముల నుండి
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 19

ప్రశ్న 6.
16 మీ ఎత్తుగల భవనము పై కప్పు నుండి క్రమ కాల వ్యవధులలో నీటి బిందువులు పడుచున్నవి. కప్పు నుండి 5 వ నీటి బిందువు పడు సమయమున మొదటి నీటి బిందువు నేలను తాకినది. వరుస నీటి బిందువుల మధ్య దూరములను కనుగొనుము.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 20
మొదటి నీటి బిందువునకు, రెండవ నీటి బిందువునకు మధ్య గల దూరం = S1 – S2 = 16 – 9 = 7 m
రెండవ నీటి బిందువునకు, మూడవ నీటి బిందువునకు మధ్య గల దూరం = S2 – S3 = 9 – 4= 5 m
మూడవ నీటి బిందువునకు, నాల్గవ నీటి బిందువునకు మధ్య గల దూరం = S3 – S4 = 4 – 1 = 3 m
నాల్గవ నీటి బిందువునకు, ఐదవ నీటి బిందువునకు మధ్య గల దూరం = S4 – 0 = 1 – 0 = 1m

ప్రశ్న 7.
కొంత దూరములో ఒక చెట్టు నుండి వ్రేలాడుచున్న ఒక కోతిని కాల్చుటకు ఒక వేటగాడు గురిపెట్టెను. అతను తుపాకి ప్రేల్చిన క్షణముననే ఆ కోతి తుపాకి గుండు నుండి తప్పించు కోవాలనే ఉద్దేశ్యంతో స్వేచ్ఛగా క్రిందికి పడెను. కాని కోతి పొరపాటు చేసినది అని నిరూపింపుము.
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 21
తుపాకి గుండు ఒక ప్రక్షేపకము వలె పరావలయ మార్గములో ప్రయాణించును. కోతి చెట్టు నుండి స్వేచ్ఛగా జారినపుడు ఏదో ఒక సమయములో తుపాకి గుండునకు తగులును.

ప్రశ్న 8.
500 మీటర్ల ఎత్తులో క్షితిజ సమాంతరముగా 360 కి.మీ/గం. వేగంతో ఎగురుచున్న ఒక విమానము నుండి ఒక ఆహార పొట్లము జారిపోయినది (1) అది నేలను తాకుటకు పట్టు కాలమును (2) ఆహార పొట్లము వదిలిన బిందువు నుండి అది నేలను తాకు బిందువు వరకు గల క్షితిజ సమాంతర దూరము ఎంత?
సాధన:
విమానము నుండి ఆహార పొట్లము జారిన బిందువునకు ఖచ్చితముగా నేలపై క్రింది ఉన్న బిందువును మూల బిందువుగా తీసుకొనుము.

(i) ఆహార పొట్లము నేలను తాకుటకు పట్టు కాలము (t) నిలువుగా క్రింది దిశలో పొట్లము ప్రయాణించు చలనము పై ఆధార పడి ఉండును. క్రింది దిశలో తొలి వేగం (u)=0, ప్రయాణించిన దూరం (s) = h = 500 మీ
త్వరణం (a) = g = 10ms-2, పట్టిన కాలం (t) = ?
s = ut + \(\frac{1}{2}\)at² ⇒ 500 = 0 + \(\frac{1}{2}\) × 10 × t² ⇒ 500 = 5t² ⇒ t² = 100 ⇒ t = 10s

(ii) క్షితిజ సమాంతర దిశలో ఆహార పొట్లము యొక్క వేగము స్థిరముగా ఉండును.
క్షితిజ సమాంతర దిశలో ప్రయాణించిన దూరం = వేగము × కాలము = 100 × 10 = 1000 మీ

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 9.
ఒక భవంతిలోని కిటికి నుండి క్షితిజ సమాంతరమునకు క్రింది వైపున 20° కోణముతో ఒక వస్తువును 8 మీ/సె వేగంతో క్రిందికి విసిరిరి. అది నేలను 3 సెకనుల తరువాత చేరినది. అయిన ఆ బంతిని నేల నుండి ఎంత ఎత్తులో విసిరివేసిరి భవంతి నుండి క్షితిజ సమాంతరముగా ఎంత దూరములో అది నేలను తాకును?
సాధన:
నిలువుగా క్రింది దిశలో వస్తువు తొలి వేగం (u) = 8 sin20° = 8 × 0.3420 – 2.736 మీసె-1.
ప్రయాణించిన కాలం (t) = 3 సె., త్వరణం (a) = g = 9.8 మీసె-2., భవంతి కిటికి ఎత్తు = దూరం s = ?
s = ut + \(\frac{1}{2}\)at² = 2.736 × 3 +\(\frac{1}{2}\) × 9.8 × 9 = 8.208 + 44.1 = 52.3m ∴ భవంతి కిటికి ఎత్తు = 52. 3 మీ.
భవంతి నుండి క్షితిజ సమాంతరముగా అది నేలను తాకు బిందువు వద్ద వరకు దూరము
= క్షితిజ సమాంతర వేగాంశము × కాలము = 8cos20° × 3 = 8 × 0.9397 × 3 = 7.5176 × 3 = 22.6 మీ

ప్రశ్న 10.
నేల పై ఒకే బిందువు వద్ద నుండి రెండు బంతులను క్షితిజ సమాంతర దిశకు 30° మరియు 60° కోణములతో ప్రక్షిప్తము చేసిరి. (a) అవి చేరుకొను గరిష్ట ఎత్తులు సమానమైనపుడు (b) వాని వ్యాప్తులు సమానమైనపుడు వాని తొలి వేగాల నిష్పత్తి ఎంత?
సాధన:
(a) వస్తువుల తొలి వేగాలు ս1 మరియు u2 అనుకొనుము.
మొదటి వస్తువు చేరుకొను గరిష్ట ఎత్తు = రెండవ వస్తువు చేరుకొను గరిష్ట ఎత్తు
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 22

ప్రశ్న 11.
ఒక బహుళ అంతస్థు పైభాగం నుంచి ఒక బంతిని నిట్టనిలువుగా పైకి 20 ms-1 వేగంతోవిసిరారు. బంతిని విసిరిన బిందువు భూమి నుండి 25.0 m ఎత్తున వుంది. (a) బంతి ఎంత ఎత్తుకు ఎగురుతుంది? (b) విసిరిన తర్వాత బంతి భూమిని తాకటానికి ఎంత కాలం పడుతుంది? g = 10 ms-2 తీసుకోండి. [‘g’ యొక్క నిజ విలువ 9.8 ms-2] [AP 15] [TS 15, 17]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 23
(a) v² – u² = 2as v = 0; u = 20 m/s, a = -g = -10m/s²
0² – u² = -2gs ⇒ -u² = -2(10) (y – y0)
⇒ (20)² = 20(y – y0) ⇒ 20 × 20 = 20(y – y0)⇒ y – y0 =20m

(b) s = ut + \(\frac{1}{2}\)at² y – y0 = ut + \(\frac{1}{2}\)at²
y0 = 25m, y = 0, u = 20m/s, a = -10m/s²
-0 – 25 = 20t + \(\frac{1}{2}\)(-10)t² ⇒ -25 = 20t – 5t²
⇒ 5t² – 20t – 25 = 0 ⇒ 5t² – 20t + 5t – 25 = 0 ⇒ 5t(t-5) + 5(t-5) ⇒ (5t + 5)(t – 5) = 0 ⇒ t – 5 = 0 ⇒ t = 5 sec

AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం

ప్రశ్న 12.
ఒక తిన్నని రహదారి వెంట ఒక కారు 126 kmh-1 వడితో ప్రయణిస్తూ 200 m దూరంలో నిశ్చలస్థితికి వచ్చింది. కారు రుణ త్వరణం (త్వరణం సమరీత త్వరణం అని భావించండి) ఎంత? నిశ్చలస్థితికి రావటానికి కారు తీసుకున్న సమయం ఎంత? [AP 20]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 3 సరళరేఖాత్మక గమనం 24

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

Students get through AP Inter 1st Year Physics Important Questions 2nd Lesson ప్రమాణాలు, కొలత which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 2nd Lesson ప్రమాణాలు, కొలత

Very Short Answer Questions (అతిస్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
యదార్థత, ఖచ్చితత్వం మధ్య తేడాలు వ్రాయండి. [Mar 13, May 13][AP, TS 15, 16, 17, 18]
జవాబు:

యదార్థత ఖచ్చితత్వము
1) కొలిచిన విలువకు నిజవిలువ ఎంత దగ్గరగా ఉంటుందో తెలియచేసేదే యదార్థత. 1) వివిధ పరిశీలనలకు సంబంధించిన కొలతలు ఎంత దగ్గరగా ఉంటాయో తెలియచేసేదే ఖచ్చితత్వం.
2) యదార్ధత దోషాలపై ఆధారపడుతుంది. 2) ఖచ్చితత్వము దోషాలపై ఆధారపడదు.
3) యదార్థత అనేది కొలిచే పరికరం అవధి, పృధక్కరణం వంటి విషయాలపై ఆధారపడి ఉండును. 3) ఖచ్చితత్వం అనేది కొలిచే పరికరం పృధక్కరణం పై ఆధారపడి ఉండును.

ప్రశ్న 2.
కొలతలో వచ్చే వివిధ రకములయిన దోషములు ఏవి?
జవాబు:
దోషాల రకాలు (1) క్రమదోషాలు (2) యాదృచ్ఛిక దోషాలు
క్రమదోషాలను మరల ఈ క్రింది విధంగా వర్గీకరించవచ్చును. (a) పరికరం వలన కలిగే దోషాలు (b) వ్యక్తిగత దోషాలు (c) ప్రయోగ పద్ధతిలోని అసమగ్రత వలన కలిగే దోషాలు.

ప్రశ్న 3.
క్రమ దోషాలను ఏ విధంగా కనిష్టము చేయవచ్చును లేక తొలగించవచ్చును? [IPE ’14][AP, TS 17, 18] [AP 22]
జవాబు:
క్రమదోషాలను కనిష్టము చేయు లేదా తొలగించు పద్ధతులు:

  1. ప్రయోగ పద్ధతులను అభివృద్ధి చెందించుట మరియు మంచి పరికరములను ఉపయోగించుట
  2. వ్యక్తిగత దోషాలను సాధ్యమైనంత వరకు తగ్గించుట
  3. ప్రయోగములో సంభవించగల దోషాలను ముందుగా ఊహించి దానికి అనుగుణంగా కొలతలకు తగిన సవరణలు చేయుట

ప్రశ్న 4.
కొలత ఫలితాన్ని అందులో ఉండే దోషాన్ని సూచిస్తూ ఏ విధంగా నివేదిస్తారో ఉదాహరణలతో వివరించండి.
జవాబు:
1) అనేక కొలతల్లో పొందిన విలువలు వరుసగా a1, a2, a3, ….an. అనుకొనుము. వాని అంకమధ్యమము aM ను ఈ క్రింది విధంగా కనుగొనవలయును.
amean = \(\frac{a_1+a_2+a_3+…….+a_n}{n}\)

2) కొలతలలోని పరమ దోషములను ఈ క్రింది విధంగా కనుగొనవలయును.
|∆a1| = |amean = a1|,|∆a2| = |amean – a2|, …….|∆an| = |amean – an|

3) అన్ని పరమ దోషాల అంకమధ్యమమును కనుగొనవలయును.
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 1
భౌతికరాశి యొక్క తుది ఫలితాన్ని ఈ క్రింది విధంగా నివేదించ వలయును ∆amean = (amean ± ∆amean)

ప్రశ్న 5.
సార్థక సంఖ్యలు అనగా ఏమి? ఒక కొలత ఫలితాన్ని నివేదించేటప్పుడు అవి ఏమి సూచిస్తాయి?
జవాబు:
ఒక కొలతను సూచించే సంఖ్యలో నిశ్చయంగా తెలిసిన అంకెలు. వీటికి తోడు అదనంగా, అంచనా ప్రకారం చేర్చిన అంకె, వీటన్నింటినీ కలిపి సార్థక సంఖ్యలు అని అంటారు.

సార్థక సంఖ్యల వలన కొలతలోని ఖచ్చితత్వం తెలియును మరియు కొలతలోని నమ్మదగిన భాగమును సూచించును.

ప్రశ్న 6.
ప్రాథమిక ప్రమాణాలు మరియు ఉత్పన్న ప్రమాణాల మధ్య తేడాలు వ్రాయండి. [IPE’14][TS 22]
జవాబు:

ప్రాథమిక ప్రమాణాలు ఉత్పన్న ప్రమాణాలు
1. ప్రాథమిక భౌతిక రాశుల ప్రమాణాలను ప్రాథమిక ప్రమాణాలు అని అంటారు.
ఉదా: మీటరు, కిలోగ్రాము మొదలైనవి.
1. ఉత్పన్న భౌతిక రాశుల ప్రమాణాలను ఉత్పన్న ప్రమాణాలు అని అంటారు.
ఉదా: మీ/సె, న్యూటను
2. ప్రాథమిక భౌతిక రాశులు 7. కావున ప్రాథమిక ప్రమాణాలు పరిమిత సంఖ్యలో ఉండును. 2. ఉత్పన్న రాశులు చాలా సంఖ్యలో ఉండును. కనుక ఉత్పన్న ప్రమాణాలు కూడా చాలా ఉండును.

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 7.
ఒకే భౌతిక రాశికి వేరువేరు ప్రమాణములు ఎందుకు ఉంటాయి? [Imp.Q][TS 15, 16, 22]
జవాబు:
ఏదైనా ఒక భౌతికరాశి, ఉదాహరణకు ద్రవ్యరాశిని గమనించిన, వస్తువుల ద్రవ్యరాశి చాలా విస్తృత అవధిలో మారుచుండును. ఉదాహరణకు ఎలక్ట్రాను ద్రవ్యరాశి 10-30 kg క్రమములో ఉండును. విశ్వము ద్రవ్యరాశి 1055 kgక్రమములో ఉండును. కనుక ఒక వస్తువు ద్రవ్యరాశిని తెలియజేయుటకు తగిన ప్రమాణమును తీసుకొనవలయును. అనగా వస్తువు ద్రవ్యరాశి చాలా తక్కువగా ఉన్నచో, మిల్లిగ్రాములు లేక గ్రాములలో తెలియజేయవచ్చును. ద్రవ్యరాశి ఎక్కువగా ఉన్నచో కి.గ్రా లేక క్వింటాలులలో తెలియజేయ వచ్చును.

ప్రశ్న 8.
మితీయ విశ్లేషణ అనగా ఏమి?
జవాబు:
మితి సమీకరణాల సహాయముతో భౌతిక శాస్త్రములోని సమస్యలను విశ్లేషించు పద్ధతిని మితీయ విశ్లేషణ అని అంటారు.

ప్రశ్న 9.
కేంద్రకం వ్యాసార్థముతో పోలిస్తే పరమాణు వ్యాసార్థం పరిమాణ క్రమాలలో ఎంత ఎక్కువగా ఉంటుంది?
జవాబు:
పరమాణు వ్యాసార్థం 10-10 m క్రమములో ఉండును.
కేంద్రకం వ్యాసార్థం 10-14 m క్రమములో ఉండును.
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 2

కనుక పరమాణు వ్యాసార్థం, కేంద్రక వ్యాసార్థమునకు 104 రెట్లు ఉండును.
పరమాణు వ్యాసార్థం, పరిమాణ క్రమము, కేంద్రక వ్యాసార్థము పరిమాణ క్రమమునకు 4 రెట్లు ఉండును.

ప్రశ్న 10.
ఏకీకృత పరమాణు ద్రవ్యరాశి ప్రమాణమును కి.గ్రాలలో తెలియజేయుము. [TS 19, 22]
జవాబు:
ఏకీకృత పరమాణు ద్రవ్యరాశి ప్రమాణము (a.m.u) = 1.67 × 10-27 kg

Short Answer Questions (స్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
ఒక పరికరములోని వెర్నియర్ స్కేలులో 50 విభాగములు ఉన్నవి. అవి 49 ప్రధాన స్కేలు విభాగములకు సమానం. ఒక్కొక్క ప్రధాన స్కేలు విభాగం పొడవు 0.5 మి.మీ. అయిన ఆ పరికరమును ఉపయోగించి కొలచిన పొడవులో వచ్చు కనిష్ట యధార్థతారాహిత్యం ఎంత?
జవాబు:
పొడవులోని కనిష్ఠ యధార్థతారాహిత్యం = పరికరము యొక్క కనీసపు కొలత
వెర్నియర్ స్కేలులోని విభాగముల సంఖ్య = N = 50
ప్రధాన స్కేలు విభాగం పొడవు, S = 0.5 మి.మీ
వెర్నియర్ స్కేలు కనీసపు కొలత, L.C = \(\frac{S}{N}=\frac{0.5mm}{50}\) = 0.01mm

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 2.
ప్రమాణాల ఒక వ్యవస్థలో బలానికి ప్రమాణం 100N, పొడవుకు ప్రమాణం 10m, కాలానికి ప్రమాణం 100s. ఈ వ్యవస్థలో ద్రవ్యరాశికి ఉండే ప్రమాణం ఏది?
జవాబు:
బలము ప్రమాణం = 100 N; పొడవు ప్రమాణం = 10 m; కాలం ప్రమాణం = 100S; ద్రవ్యరాశి ప్రమాణం =?
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 3

ప్రశ్న 3.
భూమి నుండి ఒక గెలాక్సీ దూరం 1025m క్రమములో ఉన్నది. గెలాక్సీ నుండి కాంతి భూమిని చేరుటకు పట్టే కాలం పరిమాణం క్రమాన్ని గణించండి.
జవాబు:
కాంతి వేగం = 3 × 108 మీ/సె, నక్షత్ర వీధికి, భూమికి మధ్యగల దూరం = 1025 మీ, కాలం (t) = ?
దూరం = వేగం × కాలం కనుక
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 4
∴ కాల క్రమము = 1016 సె (3.33 < 5 కనుక కాలక్రమం 1016 అగును.)

ప్రశ్న 4.
భూమి-చంద్రుల మధ్యగల దూరం సుమారు భూ వ్యాసార్థంనకు 60 రెట్లు. అయిన చంద్రుని నుండి చూస్తే భూమి వ్యాసం సుమారుగా ఎంత ఉండును.
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 5
భూమికి, చంద్రునికి మధ్యగల దూరం 60RE. వ్యాసార్థముగా ఒక వృత్తమును ఊహించుము. భూమి వ్యాసం 2RE వృత్త చాపము అనుకొనుము. వృత్త చాపం, వృత్త కేంద్రం వద్ద (అనగా చంద్రుని) చేయు కోణం θ అయిన
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 6

ప్రశ్న 5.
ఒక లోలకము 20 డోలనాలకు పట్టే కాలానికి వచ్చిన మూడు కొలతలు వరుసగా t1 = 39.6 సెకనులు, t2 = 39.9 సెకనులు, t3 =39.5 సెకనులు అయిన ఆ కొలతలలోని (a) ఖచ్చితత్వము ఎంత? (b) యదార్థత ఎంత?
జవాబు:
వివిధ పరిశీలనలకు సంబంధించిన కొలతలు ఎంత దగ్గరగా (దశాంశ స్థానముల సంఖ్య) ఉంటాయో తెలియచేసేదే ఖచ్చితత్వం.
(a) ఇచ్చిన కొలతల నుండి ఖచ్చితత్వం = గడియారము కనీసపు కొలత = 0.1 సె.

(b) 3 కొలతలు పూర్తి చేయుటకు పట్టిన సగటు కాలం = \(\frac{39.6+39.9+39.5}{3}\) = 39.66s = 39.7s
∴ కొలిచిన విలువలకు బాగా దగ్గరగా ఉండునదే యదార్థత
కావున ఇచ్చిన మూడు విలువలలో యదార్థ విలువ 39.6 సె.

ప్రశ్న 6.
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 8
జవాబు:
కెలోరి శక్తికి (ఉష్ణశక్తికి) ప్రమాణము. దీని మితి ఫార్ములా ML²T-2
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 7

ప్రశ్న 7.
శూన్యములో కాంతి వడి 1ms-1 అగునట్లుగా పొడవుకు ఒక క్రొత్త ప్రమాణమును ఎంచుకున్నారు. సూర్యుని నుండి కాంతి భూమిని చేరుటకు పట్టు కాలం 8 నిమిషముల 20 సెకనులు అయిన క్రొత్త ప్రమాణాలలో సూర్యునికి, భూమికి మధ్యగల దూరం ఎంత?
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 9

ప్రశ్న 8.
ఆవర్థనము 100 గల సూక్ష్మదర్శినిని ఉపయోగించి ఒక విద్యార్థి 20 పరిశీలనలు చేసి మానవుని వెంట్రుక సగటు మందము 3.5 మీ.మీ అని కొలిచెను. అయిన అంచనాకు వచ్చే ఆ వెంట్రుక మందము ఎంత ?
జవాబు:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 10

ప్రశ్న 9.
ఒక భౌతిక రాశి X కొలవగల నాలుగు భౌతిక రాశులు a, b, c మరియు d లపై ఈ విధముగా ఆధార పడియున్నది. x = a²b³c5/2d-2. a, b, c మరియు d ల లోని దోష శాతములు వరుసగా 1%, 2%, 3% మరియు 4% అయిన X లోని దోష శాతం ఎంత?
జవాబు:
x లోని దోష శాతం = 2 × a లోని దోష శాతం + 3 × b లోని దోష శాతం + \(\frac{5}{2}\) × c లోని దోష శాతం +2 × dలోని దోష శాతం (దోషములన్ని కూడ వలయును)
= 2 × 1% + 3 × 2% + \(\frac{5}{2}\) × 4%
= 2% + 6% + \(\frac{15}{2}\)% + 8%
= 23.5%
= 24%

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 10.
ఒక వస్తువు వేగము, కాలంతో పాటు V = At² + Bt + C సమీకరణ సూత్ర ప్రకారం మార్పు చెందుతుంది. V, tల ప్రమాణాలు S.I లో ఉంటే A, B,C స్థిరాంకాల ప్రమాణాలు కనుక్కోండి.
జవాబు:
మితుల సజాతీయత సూత్రం ప్రకారం V, At², Bt, C ల ప్రమాణాలు సమానం.
At² యొక్క SI ప్రమాణం = V యొక్క SI ప్రమాణం ⇒ A s² = m/s A యొక్క ప్రమాణం = m/s³
Bt యొక్క SI ప్రమాణం = V యొక్క SI ప్రమాణం ⇒ Bs = m/s ⇒ B యొక్క ప్రమాణం m/s²
C యొక్క SI ప్రమాణం = V యొక్క SI ప్రమాణం ⇒ C యొక్క ప్రమాణం = m/s

Solved Problems (సాధించిన సమస్యలు)

ప్రశ్న 1.
భూమి పై ఏదైన ఒక వ్యాసము యొక్క రెండు చివరి బిందువులు A, B. A, B ల వద్ద నుండి వరుసగా చంద్రుని చూచినపుడు చంద్రుని వద్ద ఆ రెండు పరిశీలన దిశల మధ్య కోణము 1°54′. భూమి వ్యాసము సుమారుగా 1.276 × 107 మీ. అయిన భూమి నుండి చంద్రుని దూరము ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 11
పటములో భూమి వ్యాసము AB = 1.276 × 107మీ
A,B ల వద్ద నుండి చూచినపుడు రెండు పరిశీలన
దిశల మధ్య కోణము θ = 1°54′ = 60′ + 54′ = 114′ [∵ 1° = 60′]
= (114 × 60)” × (4.85 × 10-6) rad [∵ 1″ = 4.85 × 10-6 rad]
గణిత శాస్త్ర నియమముల ప్రకారం AB = dθ
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 12

ప్రశ్న 2.
భూమి పై నుంచి చూచినపుడు సూర్యుని కోణీయ వ్యాసము 1920″. భూమి నుండి సూర్యుని దూరం D 1.496 × 1011 m. అయిన సూర్యుని వ్యాసము ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 13
సూర్యుని కోణీయ వ్యాసము α = 1920″
= 1920 × 4.85 × 10-6 రేడియన్ – 9.31 × 10-3 రేడియన్
సూర్యుని వ్యాసము D = αd = (9.31 × 10-3) × (1.496 × 1011)m = 1.39 × 109 మీ

ప్రశ్న 3.
10-15 నుండి 10-14 మీ సైజులో ఉండు కేంద్రకమును 10-5 మీ నుండి 10-4 మీ. సైజులో ఉండు సూది మొనకు పెంచినట్లు భావించిన సుమారుగా ఒక పరమాణువు సైజు ఎంత ఉన్నట్లు భావించవచ్చును.
సాధన:
10-15 × 1010 = 10-5 లేక 10-14 × 1010 = 10-4
అనగా కేంద్రకము యొక్క సైజును సుమారుగా 1010 రెట్లు పెంచిరి. అదే విధముగా 10-10 మీ సైజు ఉండు పరమాణువును 1010 రెట్లు పెంచిన 1 మీ అగును. అనగా 1 మీటరు వ్యాసార్థము గల గోళము కేంద్రము వద్ద ఒక గుండు సూది మొన ఎట్లు ఉండునో పరమాణువు కేంద్రము వద్ద కేంద్రకము కూడా అట్లే ఉండును.

ప్రశ్న 4.
నిరోధము R= VII పొటెన్షియల్ తేడా V = (100 ± 5)V మరియు కరెంట్ I = (10 ± 0.2)A. అయిన నిరోధములోని దోష శాతము ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 14

ప్రశ్న 5.
ఒక లఘులోలకం ఆవర్తనకాలం T = 2π\(\sqrt{\frac{L}{g}}\) లోలకము యొక్క కొలిచిన పొడవు L= 20.0 సెం.మీ దీనిలోని యదార్థత 1 మి.మీ లోలకము 100 కంపనములు పూర్తిచేయుటకు పట్టు కాలము 90 సెకన్లు అని ఒక గడియారము ద్వారా కొలిచిరి. గడియారము యొక్క పృథక్కరణ (resolution) 1 సెకను. అయిన g విలువను కనుగొన్నపుడు దానిలోని యదార్థత ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 15
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 16

ప్రశ్న 6.
ఒక వస్తువు ద్రవ్యరాశి 5.74 గ్రా. దాని ఘనపరిమాణం 1.2 సెం.మీ³. అయిన సార్థక సంఖ్యలను (significant figures) దృష్టిలో ఉంచుకొని ఆ వస్తువు సాంద్రతను కనుగొనుము.
సాధన:
ద్రవ్యరాశి కొలతలో మూడు సార్థక సంఖ్యలు, ఘనపరిమాణ కొలతలో 2 సార్థక సంఖ్యలు ఉన్నవి. నియమము ప్రకారం సాంద్రత కొలతలో కూడ 2 సార్థక సంఖ్యలు మాత్రమే ఉండవలయును.
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 17

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 7.
\(\frac{1}{2}\)mv² = mgh, అను సమీకరణములో m ద్రవ్యరాశిని, ” వేగమును, g గురుత్వ త్వరణమును, h ఎత్తును సూచించును. ఈ సమీకరణం మితుల ప్రకారం సరియైనదేనా?
సాధన:
\(\frac{1}{2}\)mv² యొక్క మితులు [M][LT-1]² = [M][L²T-2] = [ML²T-2]
mgh యొక్క మితులు [M][LT-2][L] = [M][L²T-2] = [ML²T-2]
రెండు వైపుల ఒకే మితులు వచ్చినవి కనుక మితుల ప్రకారం ఇచ్చిన సమీకరణం సరియైనదే.

ప్రశ్న 8.
ఒక లఘులోలకం ఆవర్తన కాలం (T), దాని పొడవు (l) పై లోలకం గుండు ద్రవ్యరాశి (m) పై గురుత్వ త్వరణం (g) పై ఆధారపడి ఉండవచ్చునని భావించి Tకు సమీకరణం ఉత్పాదించండి.
సాధన:
T = klxgymz. అని అనుకొనుము
ఇరువైపుల మితిఫార్ములాలు వ్రాయగా
[L0M0T¹] =[L¹]x[L¹T-2]y[M1]z = Lx+yT-2yMz.
ఘాతాంకములను పోల్చగా x + y = 0; -2y = 1; z = 0
వీని నుండి, x = 1/2, y = -1/2, z = 0. అని గమనించవచ్చు.
ప్రయోగాత్మకంగా k = 2 అని కనుగొన్నారు.
T = k l1⁄2 g-1⁄2 ⇒ T = k\(\sqrt{\frac{l}{g}}\) ⇒ T = 2π\(\sqrt{\frac{l}{g}}\)

Exercise Problems

ప్రశ్న 1.
P = El²m-5G-2 నందు E, శక్తిని, 1కోణీయ ద్రవ్యవేగమును, m ద్రవ్యరాశిని, ఆ విశ్వ గురుత్వ స్థిరాంకమును
సూచించిన P కు మితులు ఉండవని నిరూపింపుము.
సాధన:
E కి మితిఫార్ములా ML²T-2.
l కి మితిఫార్ములా ML²T-1.
m కి మితిఫార్ములా M
G కి మితిఫార్ములా M-1L³T-2.
ఇప్పుడు, El²m-5G-2
⇒ [ML²T-2][ML²T-1]²[M]-5[M-1L³T-2]-2
= ML³T-2 × M²L4T-2 × M-5 × M²L-6T4 = M1+2-5+2L2+4-6T-2-2+4 = M0L0T0
కాబట్టి P=El²m-5G-2 కు మితులు లేవు.

ప్రశ్న 2.
కాంతి వేగము c, ప్లాంక్ స్థిరాంకము h మరియు విశ్వగురుత్వ స్థిరాంకము G లను ప్రాథమిక భౌతిక రాశులుగా తీసుకొని ద్రవ్యరాశి, పొడవు, కాలములకు మితిఫార్ములాలు వ్రాయండి.
సాధన:
కాంతి వేగము cకి మితి ఫార్ముల = LT-1;
ప్లాంక్ స్థిరాంకం h కి మితిఫార్ముల= ML²T-1
విశ్వ గురుస్థిరాంకం Gకి మితిఫార్ముల = M-1L³T-2
ద్రవ్యరాశి [M] = cxhyGz ⇒ M¹L0T0 = [LT-1]x[ML²T-1]y[M-1L³T-2]z
⇒ M¹L0T0 = LxT-x × MyL2yT-y × M-zL3zT-2z
⇒ M¹L0T0 = My-zLx+2y+3zT-x-y-2z
ఘాతాంకములను పోల్చగా y – z = 1 …..(1); x + 2y + 3z = 0 …..(2); -x – y – 2z = 0 ……(3)
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 18

ప్రశ్న 3.
M ద్రవ్యరాశి, R వ్యాసార్థము గల ఒక గ్రహము చుట్టూ r వ్యాసార్థము గల కక్ష్యలో ఒక కృత్రిమ ఉపగ్రహము పరిభ్రమించుచున్నది. దాని పరిభ్రమణ కాలమునకు సమీకరణము T = \(\frac{k}{R}\sqrt{\frac{r^3}{g}}\) అని చూపుము. kఒక మితులు లేని స్థిరాంకము మరియు g గురుత్వ త్వరణం.
సాధన:
M ద్రవ్యరాశి, R వ్యాసార్ధము గల ఒక గ్రహము చుట్టూ r వ్యాసార్థము గల కక్ష్యపై ఆధారపడినట్లయితే ఆ కృత్రిమ ఉపగ్రహము యొక్క పరిభ్రమణ కాలము (T) T = kraGbMc
k అనునది మితిరహిత స్థిరాంకం. ఇరువైపులా మితి ఫార్ములాలను తీసుకున్నయిట్లతే
[M0L0T¹] = [L]a [M-1L³T-2]b [M]c ⇒ [M0L0T¹] = [L]a [M-bL3bT-2b] [M]c
⇒ [M0L0T¹] = [M-b+cLa+3bT-2b] ఇరువైపులా M, L, T మితులను పోల్చగా,
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 19

ప్రశ్న 4.
ఈ క్రింది వానిలో ఎన్ని సార్థక అంకెలు ఉన్నవి?
(a) 6729 (b) 0.024 (c) 0.08240 (d)6.032 (e) 4.57 × 108.
సాధన:
(a) 6729 : దీనిలోని సార్థక అంకెల సంఖ్య 4
కారణం : సున్న కాని అంకెలు సార్థక అంకెలు.

(b) 0.024 : దీనిలోని సార్థక అంకెల సంఖ్య 2. అవి 2,4
కారణం: ఇచ్చిన సంఖ్య 1 కంటే తక్కువయినప్పుడు దశాంశ బిందువునకు కుడివైపున మొదటి సున్నకాని అంకెకు మధ్యలో ఉన్న సున్నాలు సార్థక అంకెలు కావు.

(c) 0.08240: దీనిలోని సార్థక అంకెలు 4 అవి 8,2,4,0
కారణం: దశాంశ స్థానము ఉన్నపుడు చివరలో ఉన్న సున్నాలు సార్థక అంకెలు అవుతాయి.

(d) 6.032: దీనిలోని సార్థక అంకెల సంఖ్య 4. అవి 6, 0, 3, 2
కారణం : దశాంశ బిందువు ఎక్కడ ఉన్న, రెండు సున్న కాని అంకెల మధ్య గల సున్నాలు సార్థక అంకెలు అవుతాయి

(e) 4.57 × 108: ఇందులోని సార్థక అంకెల సంఖ్య 3. అవి 4,5,7
కారణం: సార్థక అంకెలను నిర్ణయించునపుడు 10 యొక్క ఘాతము (ఇక్కడ 8) లెక్కలోనికి రాదు.

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 5.
ఒక కర్ర ముక్క పొడవు 12.132 సెం.మీ. ఇంకొక దాని పొడవు 12.4 సెం.మీ . ఒక కర్ర ముక్క చివర రెండవ దానిని ఉంచిన మొత్తము పొడవు ఎంత? ఆ రెండు కర్ర ముక్కలను ప్రక్క ప్రక్కన ఉంచిన, వాని పొడవుల లోని తేడా ఎంత?
సాధన:
l1 = 12.132 సెం.మీ మరియు l2 = 12.4 సెం.మీ
కర్ర ముక్కలను ఒక దాని చివర రెండవది ఉంచినపుడు మొత్తము పొడవు = l1 + l2 = 12.132 + 12.4 = 24.532 సెం.మీ = 24.5 సెం.మీ

కర్ర ముక్కలను ప్రక్క ప్రక్కన ఉంచినపుడు వాని పొడవులలోని తేడా l2 – l1 = 12.4 – 12.132 – 0.268 = 0.3 సెం.మీ

కారణం:
l1, l2 లలో l2 లో దశాంశ బిందువు తరువాత ఒక స్థానము, l1 లో మూడు స్థానములు ఉన్నవి.
జవాబులో, తీసుకున్న సంఖ్యలలో తక్కువ దశాంశ స్థానములు ఎన్ని ఉన్నవో, అన్ని ఉంచవలయును.

ప్రశ్న 6.
ఒక ఘనము యొక్క భుజము 7.203 మీ. అయిన (i) దాని మొత్తము ఉపరితలము వైశాల్యము (ii) ఘనపరిమాణంను కనుక్కోండి సార్థక అంకెల ప్రకారం జవాబు నివ్వండి.
సాధన:
ఘనము యొక్క భుజము, s = 7.203 మీ
ఘనము యొక్క మొత్తము ఉపరితల వైశాల్యం, A = 6s² = 6(7.203)² = 6 × 51.883209
= 311.299254 m² = 311.3 m²

ఘనము యొక్క ఘనపరిమాణం V = s³ = (7.203)³ = 373.7147544 మీ³ = 373.7 మీ³ = 373.7 మీ³.
కారణం:
ఘనము యొక్క భుజము కొలతలో నాలుగు సార్థక అంకెలు ఉన్నవి. కావున జవాబులో కూడ నాలుగు సార్థక అంకెలు మాత్రమే ఉండవలయును.

ప్రశ్న 7.
ఒక వస్తువునకు కొలిచిన ద్రవ్యరాశి, ఘనపరిమాణములు వరుసగా 2.42 గ్రా. మరియు 4.7 సెం.మీ³ ద్రవ్యరాశి, ఘనపరిమాణములలోని దోషములు 0.01గ్రా, 0.1 సెం.మీ³. అయిన సాంద్రత కొలతలోని గరిష్ట దోషము ఎంత?
సాధన:
కొలిచిన ద్రవ్యరాశి, m = 2.42 గ్రా.
కొలిచిన ఘనపరిమాణం, v = 4.7 సెం.మీ³
ద్రవ్యరాశిలోని దోషం, ∆m = 0.01 గ్రా.
ఘనపరిమాణం లోని దోషం, ∆V = 0.1 సెం.మీ³
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 20
కారణం:
భాగహారము, హెచ్చువేతలలో తీసుకున్న సంఖ్యలలో, ఏ సంఖ్యలో కనిష్ట సార్థక సంఖ్యలు ఉన్నవో, జవాబులో అన్ని సార్థక అంకెలు మాత్రమే ఉంచవలయును.
ద్రవ్యరాశిలో 3, ఘనపరిమాణంలో రెండు సార్థక అంకెలు ఉన్నవి. ఘనపరిమాణంలో తక్కువ సార్థక అంకెలు ఉన్నవి. అవి 2. అందువలన జవాబులో కూడ 2 సార్థక అంకెలు మాత్రమే ఉండవలయును.

ప్రశ్న 8.
ఒక గోళము వ్యాసార్థము కొలతలో వచ్చిన దోషం 1% అయిన దాని ఘనపరిమాణం కొలతలో వచ్చు దోష శాతం ఎంత?
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 21
∴ కావున గోళము ఘనపరిమాణం కొలతలోని దోష శాతం 3%

ప్రశ్న 9.
ద్రవ్యరాశి, వేగము కొలతలోని దోష శాతములు వరుసగా 2%, 3% అయిన గతిశక్తి కొలతలోని గరిష్ట దోష శాతం ఎంత? [AP 18, 20][TS 20]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 22
∴ గతి శక్తిలోని దోషశాతం = 8%

AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత

ప్రశ్న 10.
సాధారణ పీడనము, ఉష్ణోగ్రత వద్ద ఒక మోల్ వాయువు ఆక్రమించు ఘనపరిమాణం 22.4 లీటర్లు (దీనిని మోలార్ ఘనపరిమాణం అని అంటారు). హైడ్రోజన్ అణువు సైజు సుమారుగా 1Å అయిన హైడ్రోజన్ మోలార్ ఘనపరిమాణంకు హైడ్రోజన్ అణువుల ఘనపరిమాణమునకు నిష్పత్తి ఎంత?
సాధన:
హైడ్రోజన్ అణువు వ్యాసము = 1Å = 1 × 10-10 మీ
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 23

ప్రశ్న 11.
Z = \(\frac{A^4 B^{1 / 3}}{C D^{3 / 2}}\) అయిన Z లోని సాపేక్షదోషాన్ని కనుగొనుము. [TS MAY 19]
సాధన:
AP Inter 1st Year Physics Important Questions Chapter 2 ప్రమాణాలు, కొలత 24

AP Inter 1st Year Physics Important Questions Chapter 1 భౌతిక ప్రపంచం

Students get through AP Inter 1st Year Physics Important Questions 1st Lesson భౌతిక ప్రపంచం which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 1st Lesson భౌతిక ప్రపంచం

Very Short Answer Questions (అతిస్వల్ప సమాధాన ప్రశ్నలు)

ప్రశ్న 1.
భౌతిక ప్రపంచం [Imp.Q]
జవాబు:
ప్రకృతిలోని మూల నియమాలు, విభిన్న దృగ్విషయాలలో ప్రత్యక్షమయ్యే వాటి స్వయం వ్యక్తీకరణలను అధ్యయనం చేసే విజ్ఞానశాస్త్రపు విభాగాన్ని భౌతిక శాస్త్రముగా పరిగణించవచ్చు.

ప్రశ్న 2.
సి.వి.రామన్ ఆవిష్కరణ ఏమిటి? [AP 22][AP, TS 17,18,19,20][Model Paper, Imp.Q]
జవాబు:
ఏకవర్ణకాంతితో ఒక ద్రవమును ప్రకాశింప చేసినపుడు పరిక్షిప్త కాంతిలో (scattered light) కొంత భాగము యొక్క తరంగ దైర్ఘ్యము పతన కాంతి యొక్క తరంగ దైర్ఘ్యము కంటె తక్కువగా గాని, ఎక్కువగా గాని యుండును. దీనిని రామన్ ఫలితము అని అంటారు. దీనిని కనుగొన్నందుకు ఈయనకు 1930లో నోబెల్ బహుమతి లభించెను..

ప్రశ్న 3.
ప్రకృతిలోని ప్రాథమిక బలములు ఏవి? [AP 19][TS 18, 22]
జవాబు:
ప్రకృతిలో 4 ప్రాథమిక బలములు ఉన్నవి.

  1. గురుత్వాకర్షణ బలం
  2. విద్యుదయస్కాంత బలం
  3. ప్రబల కేంద్రక బలం
  4. దుర్బల కేంద్రక బలం

ప్రశ్న 4.
ఈ క్రింది వానిలో సౌష్టవత గలది ఏది?
(a) గురుత్వ త్వరణం
(b) గరుత్వాకర్షణ నియమం
జవాబు:
గురుత్వాకర్షణ నియమం ప్రపంచం (విశ్వం) లోని ఏ రెండు వస్తువులకైనా, ఎక్కడైనా ఒకే విధముగా ఉండును. కనుక అది సౌష్టవము కలది.

AP Inter 1st Year Physics Important Questions Chapter 1 భౌతిక ప్రపంచం

ప్రశ్న 5.
భౌతిక శాస్త్రమునకు ఎస్. చంద్రశేఖర్ చేసిన అంశదానం ఏమిటి? [Mar, May 13][AP,TS 15,16,17,19]
జవాబు:
చంద్రశేఖర్ ముఖ్యముగా నక్షత్రములపై పరిశోధనలు చేసెను. నక్షత్ర వాతావరణము, నక్షత్ర నిర్మాణము, శ్వేత వామన తారలు (white dwarfs), గేలక్సీ (నక్షత్ర వీధి) చలన ప్రకారము, ఆదిగా గల అనేక ఖగోల విషయములపై ఆయన పరిశీలన జరిపెను.

Extra Question అదనపు ప్రశ్నలు

ప్రశ్న 1.
భౌతిక శాస్త్రమునకు ఐన్స్టీన్ చేసిన అంశదానములు ఏవి?
జవాబు:
ఆల్బర్ట్ ఐన్స్టీన్ ఇచ్చిన అంశదానములలో ముఖ్యమైనవి.
1. కాంతి విద్యుత్ ఫలితమునకు వివరణ
2. బ్రౌనియన్ చలన సిద్ధాంతము
3. సాపేక్షతా సిద్ధాంతం
4. ద్రవ్యరాశి శక్తి తుల్యత ( E = mc²)

ప్రశ్న 2.
ఏ సంవత్సరమును భౌతిక శాస్త్రపు అంతర్జాతీయ సంవత్సరముగా గుర్తించిరి?
జవాబు:
1905 వ సంవత్సరములో భౌతిక శాస్త్రానికి ఐన్స్టీన్ చేసిన బృహత్తర కృషికి గుర్తింపుగా, 2005 సంవత్సరాన్ని భౌతిక శాస్త్రపు అంతర్జాతీయ సంవత్సరముగా గుర్తించారు.

ప్రశ్న 3.
భౌతిక శాస్త్రపు ప్రాథమిక నియమములు ఏవి?
జవాబు:
ఆవేశ, రేఖీయ ద్రవ్యవేగ, కోణీయ ద్రవ్యవేగ, శక్తి నిత్యత్వ నియమములను ప్రాథమిక నియమాలు అని అంటారు.

ప్రశ్న 4.
భౌతిక శాస్త్రమునకు S.N. బోస్ చేసిన అంశదానములు ఏవి?
జవాబు:
వికిరణాన్ని ఫోటాన్లతో కూడిన ఒక వాయువుగా పరిగణించి ప్లాంక్ నియమానికి సరికొత్త ఉత్పాదనను ఇచ్చాడు. ఫోటాన్ స్థాయిలను లెక్కించే ఒక కొత్త క్వాంటమ్ గణాంక శాస్త్రాన్ని అభివృద్ధి చేసాడు.

AP Inter 1st Year Physics Important Questions Chapter 1 భౌతిక ప్రపంచం

ప్రశ్న 5.
బీటా (B) క్షయం అనగా నేమి? ఇది ఏ బల ప్రమేయం? [TS 16]
జవాబు:
రేడియో ధార్మిక కేంద్రకం, ఎలక్ట్రాన్ లేదా పాజిట్రాన్ ను విఘటనం చెందించడం ద్వారా B -క్షయాన్ని ప్రదర్శిస్తుంది. ఇవి బలహీన కేంద్రక బలాలు.

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Students get through AP Inter 1st Year Physics Important Questions 14th Lesson Kinetic Theory which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 14th Lesson Kinetic Theory

Very Short Answer Questions

Question 1.
Define mean free path.
Answer:
The mean free path is the average distance covered by a molecule between two successive collisions.

\(\vec{B}\) Where n’s the number density and d is the diameter of the molecule.

Question 2.
Name two prominent phenomena which provide conclusive evidence of molecular motion.
Answer:
Two prominent phenomena which provide conclusive evidence of molecular motion are

  1. Diffusion
  2. Brownian motion

Question 3.
How does kinetic theory justify Avogadro’s hypotheis and show that Avogadro Number in different gases is same?
Answer:
Consider same values of P, V and T for different gases. R is a universal gas constant which is also same for different gases. Then it follows from n = \(\frac{PV}{RT}\) that ‘n’ is same for different gases. This confirms Avogadro’s hypothesis. The number of molecules in 22.4 litres of any gas is 6.2 × 1023. This is known as Avogadro number.

Question 4.
When does a real gas behave like an ideal gas? [AP 22][IPE’ 14] [TS 15, 16, 18, 19, 22]
Answer:
At low pressure and high temperature, a real gas behaves like an ideal gas.

Question 5.
State Boyle’s law and Charles law’.
Answer:
Boyle’s law :
At constant temperature(T), the Pressure (P) of a given mass of gas is inversely proportional to its Volume (V). P ∝ \(\frac{1}{V}\) ,(T is constant) (or) PV = Constant,

Charles law :
At constant pressure(P), the volume (V) of a given mass of a gas is directly proportional to its temperature(T) on Kelvin scale.
V ∝ T, ( P is constant) (or) \(\frac{V}{T}\) = Constant

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 6.
State Dalton’s law of partial pressures.
Answer:
Dalton’s law of partial pressures states that total pressure of a mixture of ideal gases is sum of partial pressures.
P = P1 + P2 + P3 + —– where P1, P2, P3 are partial pressures.

Question 7.
Pressure of an ideal gas in container is independent of shape of the container-explain. [AP 15, 18]
Answer:
The pressure of an ideal gas in container = \(\frac{1}{3}nm\overline{\mathrm{v}}^2\)

This pressure is independent of area A. By Pascal’s law, pressure in one portion of the gas in equilibrium is the same as any where else. Hence pressure of an ideal gas in container is independent of shape of the container.

Question 8.
Explain the concept of degrees of freedom for molecules of a gas.
Answer:
The total number of possible independent ways in which the particles of a system can take up energy is called the degree of freedom of that system.

A molecule free to move in space has three translational degrees of freedom.
Each atom of a monoatomic gas has only three translational degrees of freedom.
A diatomic molecule has 5 degrees of freedom(3 translational and 2 rotational).

Question 9.
What is the expression between pressure and kinetic energy of a gas molecule? [AP 15, 16, 17]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 1
Thus, the pressure exerted by a gas is numerically equal to 2/3rd of the kinetic energy of the molecules present per unit volume of the gas.

Question 10.
The absolute temperature of a gas is increased 3 times. What will be the increase in rms velocity of the gas molecule? [AP ,19][TS 15,19,20]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 2

Short Answer Questions

Question 1.
Explain the kinetic interpretation of Temperature.
Answer:
The average kinetic energy of a molecule is \(\frac{1}{2}m\overline{\mathrm{v}}^2=\frac{3}{2}\)KBT

It is clear from above equation that the mean kinetic energy of a molecule is directly propor¬tional to the absolute temperature of the gas. It is independent of pressure, volume (or) the nature of the ideal gas., when the temperature of the gas is increased, the mean kinetic energy of the molecule increases. On the other hand, why heat is withdrawn from a gas, the mean kinetic energy of the molecules decreases. Thus, the temperature of a gas is a measure of the mean translational kinetic energy per molecule of the gas. This is known as ‘kinetic interpretation of temperature’.

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 2.
How specific heat capacity of mono-atomic, diatomic and poly-atomic gases can be explained on the basis of Law of equipartition of Energy? [AP, TS I6]
Answer:
Law of Equipartition of Energy:
Statement :
“According to law of equipartition of energy, each translational and rotational degree of freedom of molecule contributes \(\frac{1}{2}\)KBT to its energy.” [TS 18]

Monoatomic gas :
A monoatomic gas molecule has three degrees of freedom energy associated
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 3

Diatomic gas :
A diatomic gas molecule has five degrees of freedom. Total internal energy
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 4

Polyatomic gas :
A polyatomic molecule has 3 translational, 3 rotational degrees of freedom and atleast one (or) more number (f) of vibrational modes.
The internal energy associated with 1 mole of gas
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 5

Question 3.
Explain the concept of absolute zero of temperature on the basis of kinetic theory.
Answer:
The average kinetic energy of a molecule.
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 6

When T=0 K then Vrms = 0. This leads us to the following definition of absolute zero of temperature. Absolute zero of temperature may be defined as that temperature at which the velocities of the gas molecules becomes zero.

In other words all molecular motion ceases at absolute zero of temperature. This definition is true only in the case of an ideal gas. The value of absolute zero for an ideal gas is -273.15°C. Before the absolute zero of temperature is reached all the gases change their state to liquids and then to solids.

Question 4.
Prove that the average kinetic energy of a molecule of an ideal gas is directly proportional to the absolute temperature of the gas.
Answer:
The pressure exerted by the gas is given by P = \(\frac{1}{3}nm\overline{\mathrm{v}}^2\) ……….. (1)
Where n=number of molecules per unit volume of the sample n = \(\frac{N}{V}\)
\(\overline{\mathrm{V}}^2\) = mean of the squared speed.
Equ. (1) can also be written as
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 7
∴ Average kinetic energy of a molecule is directly proportional to absolute temperature of the gas.

Question 5.
Two thermally insulated vessels 1 and 2 of volumes V1 and V2 are joined with a valve and tilled with air at temperatures (T1, T2) and pressure (P1P2) respectively. If the valve joining the two vessels is opened. What will be the temperature inside the vessels at equilibrium.
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 8

Question 6.
What is the ratio of r.m.s speed of Oxygen & Hydrogen molecules at the same temperature?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 9

Question 7.
Four molecules of a gas have speeds 1, 2, 3 and 4 km/s. Find the rms speed of the gas molecule.
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 10

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 8.
If h gas has ‘f’ degrees of freedom, find the ratio of Cp and Cv.
Answer:
According to law of equipartition of energy each translational and rotational degree of freedom of a molecule, contributes \(\frac{1}{2}\)KBT to its energy.
Let a polyatomic molecule have ‘f’ degrees of freedom.
Energy associated with 1 mole of polyatomic gas is U = \(\frac{f}{2}\)KBT × NA
where NA = Avogadro’s number
⇒ U = \(\frac{1}{2}\)RT[∵ R = NAKB]
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 11

Question 9.
Calculate the molecular K.E of I gram of Helium (Molecular weight 4) at 127°C. Given R = 8.31 J mol-1 K-1.
Answer:
Molecular kinetic energy of 1 gram of Helium = \(\frac{3}{2}\frac{RT}{M}\)
Here R = 8.31 Jmol-1 K-1, T = 273 + 127 = 400K and M = 4
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 12

Question 10.
When pressure increases by 2%, what is the percentage decrease in the volume of a gas, assuming Boyle’s law is obeyed?
Answer:
According to Boyle’s law, PV = constant
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 13

Long Answer Questions

Question 1.
Derive an expression for the pressure of an ideal gas in a container from Kinetic theory and hence give kinetic interpretation of temperature.
Answer:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 14
Consider a gas is enclosed in a cube of side ‘l’.
Let the axes be parallel to the sides of the cube as shown in fig.
A molecule with velocity (Vx,Vy,Vz) hits the wall which is parallel to YZ plane of area A(=l²). Since the collision is elastic the molecule rebounds with the same velocity. The velocity of molecule after collision is (-Vx,Vy,Vz).
The change in momentum of the molecule = -mVx-(+mVx) = -2mVx.

According to principle of conservation of momentum, the momentum imparted to the wall in the collision = -(-2mVx) = 2mVx
The number of molecules with velocity (Vx,Vy,Vz) hitting the wall in time ∆t is \(\frac{1}{2}\) AVx ∆tn
Where ‘h’ is the number of molecules per unit volume.
The total momentum transferred to the wall by the molecules = Q = (2mVx) × \(\frac{1}{2}\) AVx ∆tn
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 15

Kinetic interpretation of Temperature:
The average kinetic energy of a molecule is \(\frac{1}{2}m\overline{\mathrm{v}}^2\) = \(\frac{3}{2}\)KBT

It is clear from above equation that the mean kinetic energy of a molecule is directly proportional to the absolute temperature of the gas. It is independent of pressure, volume (or) the nature of the ideal gas., Why the temperature of the gas is increased, the mean kinetic energy of the molecule increases. On the other hand, why heat is withdrawn from a gas, the mean kinetic energy of the molecules decreases. Thus, the temperature of a gas is a measure of the mean translations kinetic energy per molecule of the gas. This is known as ’kinetic interpretation of temperature’.

Exercise Problems

Question 1.
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3A”.
Solution:
Considering spherical shape of molecule,
Volume of oxygen molecule = \(\frac{4}{3}\)πr³ = \(\frac{4}{3}\) × 3.14(\(\frac{3}{2}\) × 10-10)³ = 4.13 × 10-30
Volume of 6.023 × 1023 molecules =14.13 × 10-30 × 6.023 × 1023
= 85.11 × 10-7 m³ = 8.511 × 10-6m³ = 8.511 × 10-3 litre
Molecular volume of one mole of oxygen = 8.511 × 10-3 litre
Actual volume occupied by one mole of oxygen at STP = 22.4 litre
Fraction of molecular volume to actual volume = \(\frac{8.511\times10^{-3}}{22.4}\) = 3.8 × 10-4 ≈ 4 × 10-4

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 2.
Molar volumes the volume occupied by 1° mole of any (ideal) gas-at standard temperature and pressure. Show that it is 22.4 litres.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 16

Question 3.
Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of 27°C and 1 atm pressure.
Solution:
PV = nRT (or) PV = nNAKBT (or) PV = NtKBT
Here Nt represents the total number of air molecules in the given gas
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 17

Question 4.
Estimate the average thermal energy of a helium atom at
(i) room temperature (27°C)
(ii) the temperature on the surface of the sun (6000K)
(iii) the temperature of 10 million kelvin
Solution:
(i) T = 27 + 273 = 300K
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 18

Multiple Choice Questions

Question 1.
The number of translational degrees of freedom tor a diatomic gas is
1) 2
2) 3
3) 5
4) 6
Answer:
2) 3

Question 2.
The degrees of freedom of a triatomic gas is
1) 6
2) 4
3) 2
4) 8
Answer:
1) 6

Question 3.
To find out degree of freedom, the expression is :
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 19
Answer:
1

Question 4.
A polyatomic gas with n degrees of freedom has a mean energy per molecule given by
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 20
Answer:
3

Question 5.
The average thermal energy for a mono-atomic gas is (k(i is Boltzmann constant and T, absolute temperature)
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 21
Answer:
2

Question 6.
A gas mixture consists of 2 moles of O2 and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
1) 15 RT
2) 9 RT
3) 11 RT
4) 4 RT
Answer:
3) 11 RT

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 7.
The molar specific heat at constant pressure of an ideal gas is (7/2)R. The ratio of specific heat at constant pressure to that at constant volume is
1) 9/7
2) 7/5
3) 8/7
4) 5/7
Answer:
2) 7/5

Question 8.
The value of γ(=\(\frac{C_p}{C_v}\)), for hydrogen, helium and another ideal diatomic gas X (whose molecules are not rigid but have an additional vibrational mode), are respectively equal to
1) 7/5, 5/3, 9/7
2) 5/3, 7/5, 9/7
3) 5/3, 7/5, 7/5
4) 7/5, 5/3, 7/5
Answer:
1) 7/5, 5/3, 9/7

Question 9.
For a certain gas the ratio of specific heats is given to be γ = 1.5. For this gas
1) Cv = 3R/J
2) Cp = 3R/J
3) Cp = 5R/J
4) Cv = 5R/J
Answer:
2) Cp = 3R/J

Question 10.
For hydrogen gas Cp – Cv = a and for oxygen gas Cp – Cv = b, so the relation between a and b is given by
1) a = 16b
2) 16b = a
3) a = 4b
4) a = b
Answer:
4) a = b

Question 11.
For a certain gas, \(\frac{R}{C_v}\) = 0.67 up of molecules which are
1) diatomic
2) mixture of diatomic and polyatomic molecules
3) monoatomic
4) polyatomic.
Answer:
3) monoatomic

Question 12.
Relation between pressure (P) and kinetic energy per unit volume (E) of a gas is
1) P = \(\frac{2}{3}\)E
2) P = \(\frac{1}{3}\)E
3) P = E
4) P = 3E
Answer:
1) P = \(\frac{2}{3}\)E

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 13.
In a vessel, the gas is at pressure P. If the mass of all the molecules is halved and their speed is doubled, then the resultant pressure will be
1) 2P
2) P
3) P/2
4) 4P
Answer:
1) 2P

Question 14.
e containers of the same volume contain three different gases. The masses es of the molecules are m1, m2 and m3 and the number of molecules in their resp active containers are N1, N2 and N3. These gas pressure in the containers are P1, P2 and P3 respectively. All the gases are now mixed and put in one of these containers. The pressure P of the n fixture will be
1) P < (P1 + P2 + P3)
2) P = \(\frac{P_1+P_2+P_3}{3}\)
3) P = P1 + P2 + P3
4) P > (P1 + P2 + P3)
Answer:
3) P = P1 + P2 + P3

Question 15.
The equation of state for 5g of oxygen at a pressure P and temperature T, when occupying a volume V, will be (Where R is constant)
1) PV = (5/32) RT
2) PV = 5RT
3) PV = (5/2) RT
4) PV = (5/16) RT
Answer:
1) PV = (5/32) RT

Question 16.
The molecules of a given mass of a gas have r.m.s. velocity of 200 ms-1 to at 27°C and 1.0 × 105 Nm-2 pressure. When the temperature and pressure of the gas are respectively, 127°C and 0.05 × 105 N m-2, the r.m.s. velocity of its molecules in m s-1 is
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 22
Answer:
4

Question 17.
Two containers A and B are partly tilled with water and closed. The volume of A is twice that of B and it contains half the amount of water in B. If both are at the same temperature, the water vapour in the containers will have pressure in the ratio of
1) 1 : 2
2) 1 : 1
3) 2 : 1
4) 4 : 1
Answer:
2) 1 : 1

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 18.
At 10°C the value of the density of a fixed mass of an ideal gas divided by its pressure is x. At 110°C this ratio is
1) 10/110 x
2) 283/383 x
3) x
4) 383/283x
Answer:
2) 283/383 x

Question 19.
The value of critical temperature in terms of vander Waals’ constant a and b is given by
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 23
Answer:
1

Question 20.
The mean free path for a gas, with molecular diameter d and number density n can be expressed as
AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory 24
Answer:
2

Question 21.
The mean free path of molecules of a gas, (radius r) is inversely proportional to
1) r³
2) r²
3) r
4) √r
Answer:
2) r²

Question 22.
At constant volume, temperature is increased then
1) collision on walls will be less
2) number of collisions per unit time will increase
3) collisions will be in straight lines
4) collisions will not change.
Answer:
2) number of collisions per unit time will increase

Question 23.
At 0 K which of the following properties of a gas will be zero?
1) vibrational energy
2) density
3) kinetic energy
4) potential energy
Answer:
3) kinetic energy

Question 24.
According to kinetic theory of gases, at absolute zero of temperature
1) water freezes
2) liquid helium freezes
3) molecular motion stops
4) liquid hydrogen freezes.
Answer:
3) molecular motion stops

AP Inter 1st Year Physics Important Questions Chapter 14 Kinetic Theory

Question 25.
Increase in temperature of a gas filled in a container would lead to
1) decrease in intermolecular distance
2) increase in its mass
3) increase in its kinetic energy
4) decrease in its pressure
Answer:
3) increase in its kinetic energy

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Students get through AP Inter 1st Year Physics Important Questions 13th Lesson Thermodynamics which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 13th Lesson Thermodynamics

Very Short Answer Questions

Question 1.
Define Thermal equilibrium. How does it lead to Zeroth law’ of Thermodynamics? [Imp.Q]
Answer:
Thermal equilibrium:
Two systems are said to be in thermal equilibrium, if the temperatures of two systems are equal and there is no net flow of heat between them when they are brought into thermal contact.

Zeroth law of Thermodynamics:
If two systems are in thermal equilibrium with a third system separately then they must be in thermal equilibrium with each other.

Question 2.
Define Calorie. What is the relation between calorie and mechanical equivalent of heat? Ilmp.Qi
Answer:
Calorie :
The amount of heat required to raise the temperature of one gram of water through 1°C at a pressure of 1 atm, is called calorie.

Mechanical equivalent of heat (J) is defined as the amount of work needed to produce 1 calorie heat.
Therefore 1 calorie = 4.186 joule

Question 3.
What thermodynamic variables can be defined by (a) Zeroth law (b) First law? [Imp.Q]
Answer:
a) Thermodynamic variable defined by Zeroth law of thermodynamics is temperature.
b) Thermodynamic variable defined by First law of thermodynamics is internal energy.

Question 4.
Define specific heat capacity of the substance. On what factors does it depend? [Imp.Q]
Answer:
Specific heat capacity :
The amount of heat required by unit mass of substance to raise its temperature by one degree is called specific heat capacity.
S = \(\frac{1}{m}\)(\(\frac{dQ}{dT}\))
Specific heat capacity depends on the nature of the substance and its temperature.

Question 5.
Define molar-specific heat capacity. [Imp.Q][May 13]
Answer:
Molar-specific heat capacity :
The amount of heat required by one mole of substance to raise its temperature by one degree is called molar-specific heat capacity.
C = \(\frac{1}{n}\)(\(\frac{dQ}{dT}\))
SI units : Jmol-1K-1

Molar-specific heat capacity depends on the nature of the substance, its temperature and the conditions under which heat is supplied.

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 6.
For a solid, what is the total energy of an oscillator? [Imp.Q]
Answer:
Average energy of an oscillator in one dimension = 2 × \(\frac{1}{2}\)KBT= KBT
Average energy of an oscillator in three dimension = 3KBT
For a mole of solid, the total energy is U = 3KBT × NA = 3RT (y R = NAKB)
Where NA = Avosadro number.

Question 7.
Indicate the graph showing the variation of specific heat of water with temperature. What does it signify?
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 1
Answer:
It specifies the unit temperature interval as 14.5°C to 15.5°C for a precise definition of calorie.

Question 8.
Define state variables and equation of state. [Imp.Q]
Answer:
State variables :
Specific values of some microscopic variables like pressure, volume, temperature and mass which completely describe an equilibrium state of a thermodynamic system are known as state variables.

Equation of state :
The relation between the state variables is called the equation of state.
Ex: For an ideal gas, the equation of state is the ideal gas relation PV = nRT

Question 9.
Why a heat engine with 100% efficiency can never be realised in practice? [Imp.Q]
Answer:
The efficiency of heat engine is η = 1 – \(\frac{T_2}{T_1}\)

η is always less than one. The value of η can be one only if T2 = 0 . i.e if the sink is at absolute zero of temperature. Since the absolute zero of temperature can not be attained, therefore η can not be equal to one.

Question 10.
In summer, when the valve of a bicycle tube is opened, the escaping air appears cold, why? [Imp.Q]
Answer:
The pressure of air inside the tube is sufficiently greater than atmospheric pressure. When the valve of a bicycle tube is opened, the air expands under adiabatic process. It does some work against surroundings and so its internal energy decreases. This causes a fall in temperature. Hence escaping air from a bicycle tube appears cold.

Question 11.
Why does the brake drum of an automobile get heated up while moving down at constant speed? [Imp.Q]
Answer:
Since the speed is constant there is no change of kinetic energy. The loss in gravitational potential energy is partially the gain in the heat energy of the brake drum of an automobile while moving down at constant speed.

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 12.
Can a room be cooled by leaving the door of an electric refrigerator open? [Imp.Q]
Answer:
No. The room can not be cooled by opening the door of an electric refrigerator.

A refrigerator extracts heat from the freezing chamber(cold reservoir), some work is done on it by electric motor and rejects heat into the surrounding(hot reservoir) air. If the door of a running refrigerator is left open, more heat is rejected to the surroundings. Hence the room will get slightly heated.

Question 13.
Which of the two will increase the pressure more, an adiabatic or an isothermal process, in reducing the volume to 50%?
Answer:
The pressure is more during an adiabatic process.

Isothermal compression :
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 2

Question 14.
A thermos flask containing a liquid is shaken vigorously, what happens to its temperature? [Imp.Q]
Answer:
Heat is not added to the liquid externally, but work is done on the liquid. Since it is vigorously shaken the internal energy of the liquid increases, so the temperature of the system raises.

Question 15.
A sound wave is sent into a gas pipe. Does its internal energy change?
Answer:
Yes. The propagation of sound wave through a pipe is a quick process. It is an adiabatic change. So temperature increases. Therefore internal energy also increases.

Question 16.
How much will be the internal energy change in
i) isothermal process
ii) adiabatic process
Answer:
i) There is no change in the internal energy of an ideal gas in an isothermal process.
i.e dU = 0
ii) For adiabatic process dQ = 0
Hence dU = -dW

Work done by the gas results in decrease in its internal energy.
If work is done on the gas then its internal energy increases.

Question 17.
The coolant in si chemical or a nuclear plant should have high specific heat. Why? [Imp.Q]
Answer:
By allowing water to flow in pipes around the heated parts of a machine heat energy from such parts is removed. Water in pipes extracts more heat without much rise in its temperature because of its large specific heat.

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 18.
Explain the following processes
i) isochoric process
ii) isobaric process
Answer:
Isochoric process :
A process that takes place at constant volume of the system is called Isochoric process.
Ex: Heat is added to the gas enclosed in a cylinder having rigid walls and a fixed piston.

Isobanc process :
A process that takes place at constant pressure of the system is called Isobaric process.
Ex: Heating of water at atmospheric pressure.

Short Answer Questions

Question 1.
State and explain first law of thermodynamics.
Answer:
First law of Thermodynamics:

Statement :
The first law of thermodynamics states that the amount of heat supplied to a system is equal to the sum of the change in internal energy of the system and the amount of external work done by the system.

If a small quantity of heat (dQ) is supplied to a gas, a part of it is used to increase internal energy(dU) and remaining heat is used in doing external work (dW).
Then dQ = dU + dW

Sign convention:
If the work is done by the system, dW is positive
If the work is done on the system, dW is negative
When heat is supplied to the system, dQ is positive
When the heat is taken out from the system, dQ is negative
The essential content of the first law of thermodynamics is that it defines one of the thermodynamic quantities ‘the internal energy’ or ‘internal energy function’.

This law is a consequence of conservation of energy.

Limitations:

  1. It does not tell about the direction of heat flow.
  2. It does not tell us about the efficiency with which heat can be converted into work.

Question 2.
Define two principle-specific heats of a gas. Which is greater and why? [TS 15]
Answer:
Specific heat at constant pressure (Cp) :
At constant pressure, the quantity of heat necessary to increase the temperature of unit mass of a gas through one degree, is called specific heat of the gas at constant pressure.

Specific heat at constant volume (Cv) :
At constant volume, the quantity of heat necessary to increase the temperature of unit mass of a gas through one degree, is called specific heat of gas at constant volume.

When heat is supplied to a system (gas) at constant volume, the heat is completely utilised to increase the internal energy of the system (gas).

But at constant pressure, supplied heat will he utilised in two ways :

  1. To increase the internal energy of the system.
  2. Todo work against external pressure (PdV).

Hence, more heat is to be supplied to the system at constant pressure than constant volume for the same rise of temperature. Hence Cp > Cv.

Question 3.
Derive a relation between the two specific heat capacities of gas on the basis of first law of thermodynamics, (or) Derive Cp – Cv = R. [TS 15]
Answer:
Consider one mole of Ideal Gas contained in a cylinder provided with a frictionless Piston.

Let Abe the area of cross-section of the Piston and P, V, T be the pressure, volume and temperature of the gas.

When Gas is heated, it expands and Piston moves up a distance dx.

Case – I :
Let the Gas be heated at constant volume, then Heat supplied is dQ1 = CvdT
From first law of thermodynamics, dQ = dU + dW
But, in this case dW = 0 ∴ dQ = dU = CvdT ………… (1)
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 3

Case – II :
Let the Gas be heated at constant pressure. then Heat supplied is dQ = CvdT ………… (2)
But, workdone by the gas is dW = F.S = (PA)dx = PdV, [Since, Adx = dV]
∴ dW = PdV ………….. (3)

From first law of thermo dynamics, dQ = dU + dW ………….. (4)
Substitute equations (1), (2), (3) in equation (4) we have CpdT = CvdT + PdV ……….. (5)
From Ideal gas equation PV = RT
At constant pressure, PdV= RdT
Hence, from (5), we get CpdT = CvdT + RdT ⇒ Cp = Cv + R
∴ Cp – Cv = R

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 4.
Obtain an expression for the work done by an ideal gas during isothermal change. [Imp.Q]
Answer:
Isothermal Process :
The process in which pressure and volume changes occur at constant temperature is called Isothermal process.

Workdone :
Let a certain mass of gas expands from volume V1 to V2 and pressure changes from P1 to P2 isothermally at constant temperature T.

Work done by the gas during a small change in volume is dW = PdV.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 4

Question 5.
Obtain an expression for the work done by an ideal gas during adiabatic change and explain. [Imp.Q]
Answer:
Adiabatic Process :
The process in which changes in pressure and volume of a gas takes place at constant Heat energy is called Adiabatic process.
Let a certain mass of gas expand adiabatically from volume V1 to V2.
Let pressure changes from P1 to P2 and temperature T1 to T2.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 5

Question 6.
Compare isothermal and an adiabatic process.
Answer:

Isothermal Process Adiabatic Process
1) In Isothermal process, temperature remains constant and heat exchanges between system and surroundings. 1) In Adiabatic process, total heat remains constant and temperature changes between system and surroundings.
2) This process should be performed in a good conducting vessel. 2) This process should be performed in a bad conducting vessel.
3) It is a slow process. 3) It is a quick process
4) Gas law PV = constant,holds true. 4) Gas law PVγ = constant, holds true.
5) Specific heat is infinity. 5) Specific heat is zero.
6) External work done is zero (dW = 0). 6) There is some external work done (dW ≠ O)
7) First law of Thermodynamics becomes
dQ = dU
7) First law of Thermodynamics becomes
dU + dW = 0(dQ = 0).
8) Ex: Boiling of water in open air. 8) Ex: Compressing an ideal gas quickly.

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 7.
Explain the following processes [Imp.Q]
i) Cyclic process with example.
ii) Non cyclic process with example.
Answer:
Cyclic process:
A process in which the system after passing through various stages (pressure, volume, and temperature changes) returns to its initial state is defined as a cyclic process.

The internal energy U of the system depends only on the state of the system and not on the path followed. As we reach finally the initial state in a cyclic process, there will be no change in the internal energy, i.e dU = 0.

According to first law of thermodynamics, for a cyclic process, dQ = dW.

That is in a cyclic process, the total heat absorbed by the system equals the work done by the system.
Ex: 1) The Carnot cycle is the best example of the cyclic process
2) A system in heat engine is made to undergo a cyclic process.

Non cyclic process:
Non cyclic process is that process in which the system does not return to its initial stage.
Ex: When ice is placed in a given space warmed than 0°C, heat flows into the ice and the space is cooled (or) refrigerated. The latent heat of fusion of ice is supplied from the surroundings and the ice changes its state. This refrigeration effect has been accomplished by non-cyclic process.

Question 8.
Write a short note on Quasi-static process.
Answer:
The thermodynamic variables like pressure(P), volume(V), temperature(T) and mass(m) characterise a thermodynamic system.If these variables do not change with time then the system is in thermodynamic equilibrium. If the pressure of the gas equals the external pressure and the temperature of the gas is also the same as that of the surrounding then gas is in thermodynamic equilibrium with its surroundings.

If the piston is pushed downwards, the gas inside the vessel will undergo sudden compression. During the compression due to rapid change in pressure and temperature, the gas passes through several non-equilibrium states and finally attains equilibrium state with the surrounding. Imagine an idealised process in which at every stage the system is in all equilibrium state. Such a process should take place in a very slow manner and at every stage the process appears to be almost nearly static and such an idealised process is called quasi-static process.

At every stage the system will be in thermal and mechanical equilibrium with its surroundings. Temperature difference and pressure differences will be infinitesimally small.

Definition:
A quasi-static process can be defined as an infinitesimally slow process in which at each and every intermediate stage the system remains in thermal and mechanical ( thermodynamic) equilibrium with the surroundings through out the entire process.

In practice we can treat any process taking place sufficiently slowly, not involving accelerated motions and large temperature gradients can be considered to be a quasi-static process.

Question 9.
Explain qualitatively the working of a heat engine. [Imp.Q]
Answer:
Heat Engine :
A device used to convert heat energy into work is called a heat engine. A heat engine consists of three parts.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 6

(i) Source :
Source is the body at a higher temperature(T1).
Heat (Q1) is extracted from this body and hence it is called “source”.

(ii) Working substance :
Ideal gas acts as a working substancein a heat engine.
Ex: In a steam engine, the working substance is steam.

(iii) Sink :
Sink is the body at a lower temperature(T2)
Heat (Q2) is rejected by the working substance into the sink.
∴ Workdone by the steam is W = Q1 – Q2

Efficiency of the Heat Engine:
The efficiency (r)) of a heat engine defined as, the ratio of the work (W) done by the engine to the amount of Heat(Q1) absorbed by the engine
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 7

Long Answer Questions

Question 1.
Explain reversible and irreversible processes. Describe the working of Carnot engine. Obtain an expression for the efficiency. |TS 15, 17, 19, 19; AP 16, 17, 18, 19, 20, 22]
Answer:
Reversible process :
A process that can be retraced back in the opposite direction is called a reversible process.
Ex: Fusion of ice and vaporisation of water.

Irreversible process :
A process that can not be retraced back in the opposite direction is called an irreversible process.
Ex: Work done against friction.

Carnot engine :
Areversible heat engine operating between two temperatures is called a Carnot engine.

Working of Carnot engine :
The carnot engine undergoes a cycle of processes called camot cycle. It consists of two isothermal processes connected by two adiabatic processes. Ideal gas acts as the working substance in the camot engine.

The steps of Carnot cycle:
a) Isothermal expansion of the gas taking its state from (P1,V1, T1) to (P2, V2, T2).
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 8
Heat(Q1) absorbed by the gas from the reservoir at temperature (T1) is equal to the work done (W1) by the gas.
W1 = Q1 = nRT1loge(\(\frac{V_2}{V_1}\)) ——– (1)

b) Adiabatic expansion of the gas from (P2,V2, T1) to (P3, V3, T2).
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 9

c) Isothermal compression of the gas from (P3, V3, T2) to (P4, V4, T2).
Heat (Q2) released by the gas to the reservoir at temperature(T2)is equal to the work done on the gas .
W3 = Q2 = nRT2loge(\(\frac{V_2}{V_1}\)) ——– (3)

d) Adiabatic compression of the gas from (P4, V4, T2) to (P1, V1, T1).
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 10
(b) & (d) sire adiabatic processes.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 11

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 2.
State second Saw of thermodynamics. How is heat engine different from a refrigerator. [AP 19; TS 18, 20]
Answer:
Second law of thermodynamics:
Second law of thermodynamics gives the direction of flow of heat.
It consists of two statements.

I) Kelvin – Plank Statement :
It is impossible to construct a heat engine that absorbs heat from a hot reservoir which converts completely that heat into work.
(or) It is impossible to construct an ideal heat engine with 100% thermal efficiency,

II) Clausius Statement :
It is impossible to transfer heat from a colder object to a hotter object (or) It is impossible to construct an ideal refrigerator.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 12

Exercise Problems

Question 1.
If a monoatomic ideal gas of volume 1 litre at N.T.P is compressed (i) adiabatically to half of its volume, find the work done on the gas. Also find (ii) the work done if the compression is isothermal.(γ = 5/3)
Answer:
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 13

Question 2.
Five moles of hydrogen when heated through 20K expand by an amount of 8.3 × 10-3 m³ under a constant pressure of 105 N/m². If CV = 20J/mole K, find CP.
Answer:
Cp – Cv = R
Multiplying throughout by ndT we get, ndT(CP – CV) = ndTR
⇒ ndT(CP – CV) = ndTR = PdV (∵ PdV = nRdT)
Here n = 5, P = 105 N/m², dT = 20K and dV = 8.3 × 10-3
⇒ 5 × 20 (CP – 20) = 105 × 8.3 × 10-3 ⇒ CP – 20 = 8.3
CP = 20 + 8.3 = 28.3 J/mole K

Question 3.
A refrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36°C, calculate the coefficient of performance.
Answer:
Here T, = 273 + 36 = 309 K, T2 = 273 + 9 = 282 K 282 282

Question 4.
What amount of heat must be supplied to 2.0 × 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45°C at constant pressure?
(Molecular mass of N2 = 28, R = 8.3 ,1/ mol. K) [AP 20]
Answer:
Amount of heat supplied at constant pressur dQP = nCPdT
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 14

Question 5.
A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 15
The pressure of the gas increases by a factor 2.64 when the gas is compressed to half its original volume.

Question 6.
In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium state B an amount of work equal to 22.3 J is done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal how much is the net work done by the system in the latter case?
(Take I cal = 4.19 J)
Answer:
The system goes from state A to state B adiabatically. ∴ dQ = 0
According to first law of thermodynamics dQ = dU + dW ⇒ 0 = dU + dW ⇒ dU= -dW
The work done on the system dW= -22.3 J
∴ dU = -(-22.3) = 22.3 J
In the second case, ∆Q = 9.35 cal = 9.35 × 4.19 = 39.18 J
∴ dQ = dU + dW ⇒ dW = dQ – dU= 39.18 – 22.3 = 16.88 J

Question 7.
An electric heater supplies heat to a system at a rate of 100W. If system performs work at a rate of 75 joules per second. At what rate is (he internal energy increasing?
Answer:
Rate of heat supplies to the system, \(\frac{dQ}{t}\) = 100w = 100 Js-1
Rate of work done by the system, \(\frac{dQ}{t}\) = 75 JS-1
According to first law of thermodynamics,
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 16
The rate of increase in internal energy = 25 JS-1

Question 8.
Find the external work done by the system in kcal, when 20 kcal of heat, is supplied to the system the increase in its internal energy is 8400 J. (J = 4200 J/kcal).
Answer:
From, the first law of thermodynamics, dQ = dU + dW
Given dU = 8400J = \(\frac{8400}{4200}\) = 2kcl, dQ = 20kcl
The external work done dW = dQ – dU= 20 – 2 = 18 kcal

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 9.
Find the efficiency of a heat engine if the temperature of the source is 100°C and sink is 27°C.
Answer:
Formula: η = 1 – \(\frac{T_2}{T_1}\)
Given T1 = 373K, T2 = 300K
∴ η = 1 – \(\frac{300}{373}\) = 1 – 0.8043 = 0.1957 (or) η = 19.57 %

Multiple Choice Questions

Question 1.
There are two lead spheres at the same temperature, the ratio of radii being 1 : 2. The ratio of heat capacities are
1) 1 : 2
2) 1 : 4
3) 1 : 6
4) 1 : 8
Answer:
4) 1 : 8

Question 2.
5Kg of ice at -10°C is added to 5 Kg of water at 10°C. The temperature of the resulting mixture will be
1) -10°C
2) 0°C
3) 3.3°C
4) 10°C
Answer:
2) 0°C

Question 3.
A diatomic gas molecule has translational, rotational and no vibrational degrees of freedom. The ratio of specific heats CP/CV
1) 1.67
2) 1.4
3) 1.29
4) 1.33
Answer:
2) 1.4

Question 4.
An amount of water of mass 20gms at 0°C is mixed with 40gms of water at 10°C. Final temperature of mixture is
1) 20°C
2) 6.66°C
3) 5°C
4) 0°C
Answer:
2) 6.66°C

Question 5.
The pressure and density of a diatomic gas (γ = \(\frac{7}{5}\)) change adiahatically from (P,d) to (P¹d¹).If \(\frac{d^1}{d}\) = 32, then \(\frac{P^1}{P}\) is
1) \(\frac{1}{128}\)
2) 32
3) 128
4) 256
Answer:
3) 128

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 6.
A gas at 250K is suddenly compressed to 1/8 of its original volume. The rise in temperature is
1) 321 K
2) 421 K
3) 621 K
4) 871 K
Answer:
3) 621 K

Question 7.
Time taken by a 836W heater to heat one litre of water from 10°C to 40°C is
1) 50 s
2) 100 s
3) 150 s
4) 200 s
Answer:
3) 150 s

Question 8.
For an isothermal expansion of a perfect gas the value of \(\frac{\Delta \mathrm{P}}{\mathrm{P}}\) is equal to
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 17
Answer:
2

Question 9.
During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio of CP/CV for the gas is
1) 4/3
2) 2
3) 5/3
4) 3/2
Answer:
4) 3/2

Question 10.
One mole of ideal monoatomic gas (γ = 5/3) is mixed with one mole of diatomic gas (γ = 7/5) . What is γ for the mixture? [γ denotes the ratio of specific heat at constant pressure, to that at constant volume]
1) 3/2
2) 23/15
3) 35/23
4) 4/3
Answer:
1) 3/2

Question 11.
First law of thermodynamics is consequence of conservation of
1) work
2) energy
3) heat
4) all of these
Answer:
2) energy

Question 12.
The internal energy change in a system that has absorbed 2 kcal of heat and done 500 J of work is
1) 6400 J
2) 5400J
3) 7900J
4) 8900J
Answer:
3) 7900J

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 13.
110 joule of heat is added to a gaseous system whose internal energy is 40 J, then the amount of external work done is
1) 150 J
2) 70 J
3) 110 J
4) 40 J
Answer:
2) 70 J

Question 14.
A monatomic gas at pressure P1 and volume V1 is compressed adiabatically to 1/8th of its original volume. What is the final pressure of the gas?
1) 64 P1
2) P1
3) 16P1
4) 32P1
Answer:
4) 32P1

Question 15.
If ∆U and ∆W represent the increase in internal energy and work done by the system respectively in a thermodynamical process, which of the following is true?
1) ∆U = – ∆W, in an adiabatic process
2) ∆U = ∆W, in an isothermal process
3) ∆U = ∆W, in an adiabatic process
4) ∆U = -∆W, in an isothermal process
Answer:
1) ∆U = – ∆W, in an adiabatic process

Question 16.
An ideal gas at 27°C is compressed adiabaticaliy to 8/27 of its original volume. The rise in temperature is (Take γ = 5/3)
1) 275 K
2) 375 K
3) 475 K
4) 175 K
Answer:
2) 375 K

Question 17.
An ideal gas, undergoing adiabatic change, has which of the following pressure-temperature relationship?
1) PγT1-γ = constant
2) P1-γTγ = constant
3) Pγ-1Tγ = constant
4) PγTγ-1 = constant.
Answer:
2) P1-γTγ = constant

Question 18.
In an adiabatic change, the pressure and temperature of a monatomic gas arc related as P ∝ TC, where C equals
1) 3/5
2) 5/3
3) 2/5
4) 5/2
Answer:
4) 5/2

Question 19.
Which of the following relations does not give the equation of an adiabatic process, where terms have their usual meaning?
1) p1-γTγ – constant
2) PVγ – = constant
3) TVγ-1 = constant
4) PγT1-γ =constant
Answer:
4) PγT1-γ =constant

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 20.
A monatomic gas at a pressure P, having a volume V expands isothermally to a volume 2V and then adiabaticaliy to a volume 16V. The final pressure of the gas is (Take γ = 5/3)
1) 64P
2) 32P
3) P/64
4) 16P
Answer:
3) P/64

Question 21.
One mole of an ideal monatomic gas undergoes a process described by the equation PV³ = constant. The heat capacity of the gas during this process is
1) 3/2 R
2) 5/2 R
3) 2R
4) R
Answer:
4) R

Question 22.
A mass of diatomic gas (γ = 1.4) at a pressure of 2 atmospheres is compressed adiabaticaliy so that its temperature rises from 27°C to 927°C. The pressure of the gas in the final state is
1) 8 atm
2) 28 atm
3) 68.7 atm
4) 256 atm
Answer:
4) 256 atm

Question 23.
A diatomic gas initially at 18°C is compressed adiabaticaliy to one eighth of its original volume. The temperature after compression will be
1) 395.4°C
2) 144°C
3) 18°C
4) 887.4°C
Answer:
1) 395.4°C

Question 24.
During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its temperature. The ratio of Cp/Cv for the gas is
1) 5/3
2) 3/2
3) 4/3
4) 2
Answer:
2) 3/2

Question 25.
If cp and cv denote the specific heats per unit mass of an ideal gas of molecular weight M, then
where R is the molar gas constant.
1) Cp – Cv = R/M²
2) Cp – Cp = R
3) Cp – Cv = R/M
4) Cp – Cp = MR
Answer:
3) Cp – Cv = R/M

Question 26.
If the, ratio of specific heat of a gas at constant pressure to that at constant volume is y, the change in internal energy of a mass of gas, when the volume changes from V to 2V at constant pressure P, is
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 18
Answer:
1

Question 27.
One mole of an ideal gas requires 207 J heat to rise the temperature by 10 K when heated at constant pressure. If the same gas is heated at constant volume to raise the temperature by the same 10 K, the heat required is ((liven the gas constant R = 8.3 J/mole K)
1) 198.7 J
2) 29 J
3) 215.3 J
4) 124 J
Answer:
4) 124 J

Question 28.
In which of the following processes, heat is neither absorbed nor released by a system?
1) isochoric
2) isothermal
3) adiabatic
4) isobaric
Answer:
3) adiabatic

Question 29.
A thermodynamic system is taken from state A to B along ACB and is brought back to A along BDA as shown in the PV diagram.
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 19
The net work done during the complete cycle is given by the area
1) P1ACBP2P1
2) ACBB’A’A
3) ACBDA
4) ADBB’A’A
Answer:
3) ACBDA

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 30.
Which of the following processes is reversible?
1) Transfer of heat by conduction
2) Transfer of heat by radiation
3) Isothermal compression
4) Electrical heating of a nichrome wire
Answer:
3) Isothermal compression

Question 31.
An ideal gas heat engine operates in Carnot cycle between 227°C and 127°C. It absorbs 6 × 104 cal of heat at higher temperature. Amount of heat converted to work is
1) 4.8 × 104 cal
2) 6 × 104 cal
3) 2.4 × 104 cal
4) 1.2 × 104cal

Question 32.
An ideal Carnot engine, whose efficiency is 40%, receives heat at 500 K. If its efficiency is 50%, then the intake temperature for the same exhaust temperature is
1) 800 K
2) 900 K
3) 600 K
4) 700 K
Answer:
3) 600 K

Question 33.
A scientist says that the efficiency of his heat engine which work at source temperature 127°C and sink temperature 27°C is 26%, then
1) it is impossible
2) it is possible but less probable
3) it is quite probable
4) data are incomplete
Answer:
1) it is impossible

Question 34.
The efficiency of a Carnot engine operating with reservoir temperature of 100°c and -23°C will be
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 20
Answer:
2

Question 35.
When a heat Q is supplied to one mole of mono-atomic gas (γ = 5/3) then molar heat capacity of the gas at constant volume is
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 21
Answer:
1

Question 36.
The temperature of 5 moles of a gas at a constant volume is changed from 100°C to 120°C. The change in internal energy is 80J. The heat capacity of the gas at constant volume will be ( in J/K)
1) 8
2) 4
3) 0.8
4) 0.4
Answer:
2) 4

AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics

Question 37.
When a mono-atomic gas expands at constant pressure, the percentage of heat supplied that increase the internal energy of the gas and that which is involved in expansion is
1) 75%, 25%
2) 25%, 75%
3) 60%, 40%
4) 40%, 60%
Answer:
3) 60%, 40%

Question 38.
PV diagram of an ideal gas is shown in figure. Work done by the gas in the process ABCD is
AP Inter 1st Year Physics Important Questions Chapter 13 Thermodynamics 22
1) 4P0V0
2) 2P0V0
3) 3P0V0
4) P0V0
Answer:
3) 3P0V0

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Students get through AP Inter 1st Year Physics Important Questions 12th Lesson Thermal Properties of Matter which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 12th Lesson Thermal Properties of Matter

Very Short Answer Questions

Question 1.
Distinguish between heat and temperature.
Answer:

HEAT TEMPERATURE
1) Fleat is a form of energy. 1) Temperature is a measure of thermal energy.
2) C.G.S unit: Calorie
S.I unit: joule
2) C.G.S unit: °C
S.I unit: kelvin
3) A calorimeter is used to measure the amount of heat in a substance 3) A thermometer is used to measure the temperature of a substance.

Question 2.
What are the Sower and upper fixing points in Celsius and Fahrenheit scales? [AP 19]
Answer:
On Celsius scale of temperature, the lower fixed point is 0°C and the upper fixed point is 100HC. On Fahrenheit scale of temperature, the lower fixed point is 32°F and the upper fixed point is 212°F.

Question 3.
Do the values of coefficients of expansion differ when the temperatures are measured on Centigrade scale or on Fahrenheit scale? [Imp.Q]
Answer:
Yes. One degree interval on Fahrenheit scale is less than one degree interval on Celsius scale. Since, x(°C)-1 = x × \(\frac{5}{9}\)(°F)-1

Question 4.
Can a substance contract on heating? Ciive an example. [TS 16,18][AP 18, 22]
Answer:
Yes.
Ex: Cast iron, Natural Rubber( an alloy of lead, tin & antimony), type metal and pure water between 0°C to 4°C.

Question 5.
Why gaps are left between rails on a railway track?
Answer:
A small gap is left between the ends of successive rails on a railway track.
This is to allow linear expansion of rails in summer.

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 6.
Why do liquids have no linear and areal expansions? [TS 19][Imp.Q]
Answer:
Liquids have no shape of their own. They always take the shape of the vessel. Flence they do not have coefficients of Linear and Areal expansion.

Question 7.
What is latent heat of fusion?
Answer:
Latent heat of fusion of ice :
The latent heat of fusion of ice is the amount of heat required to convert ‘unit mass of water’ at 0°C into ice at 0°C.
For water, the latent heat of fusion is 80 calgm-1 (or) 3.33 × 105 Jkg-1

Question 8.
What is latent heat of vapourisation? [Imp.Q]
Answer:
Latent heat of vapourisation of water :
The amount of heat required to change ‘unit mass of a liquid’ into vapour, at constant temperature is called Latent heat of Vapourisation.

For water the latent heat of vapourisation 540 calgm-1 (or) 2.26 × 106 J/kg.

Question 9.
What is specific gas constant? Is it same for all gases?
Answer:
The universal gas constant per unit mass is called ‘specific gas constant’, i.e r = \(\frac{R}{M}\)

No. It is not same for all gases. It is different for different gases.

Question 10.
What are the units and dimensions of specific gas constant? [Imp.Q]
Answer:
S.I Unit: J Kg-1 K-1 ;
Dimensional formula: [ M° L² T-2 K-1]

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 11.
Why utensils are coated black? Why the bottom of the utensils are made of copper? [AP, TS 18]
Answer:
Since black bodies are good absorbers of heat, utensils are coated black to absorb heat energy falling on them. Copper is a good conductor of heat. Hence it promotes the distribution of heat over the bottom of a vessel for uniform cooking.

Question 12.
State Weins displacement law? [TS 20][AP 17, 19]
Answer:
Weins displacement law :
The wavelength(λm) for which energy is maximum is inversely proportional to absolute temperature of the body.
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 1
Wein’s constant is 2.9 × 10-3 mK

Question 13.
Ventilators are provided in rooms just below the roof. Why?
Answer:
Hot air has less density. So it moves upwards due to convection.

To escape this hot air outoff the room, ventilators are provided just below the roof.

Question 14.
Does the body radiate heat at OK? Does it radiate heat at 00C? [Imp.Q]
Answer:

  1. No, the body does not radiate heat at OK.
  2. Yes, the body radiates heat at 0°C.

Question 15.
State the different modes of transmission of heat. Which of these modes require medium? [TS 18][Imp.Q]
Answer:
There are three distinct modes of heat transfer :

  1. Conduction
  2. Convection and
  3. Radiation

Conduction and convection of heat are required material medium.

Question 16.
Define coefficient of thermal conductivity and temperature gradient. [Imp.Q]
Answer:
The quantity of heat flowing normally per second through unit area of the substance per unit temperature gradient is called “coefficient of thermal conductivity”.
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 2

The change in temperature per unit distance moved in the direction of flow of heat is called temperature gradient. Temperature gradient = \(\frac{\left(\theta_2-\theta_1\right)}{\mathrm{d}}=\frac{\Delta \theta}{\mathrm{d}}\)

Question 17.
What is thermal resistance of a conductor? On what factors does it depend? [Imp.Q]
Answer:
The resistance offered by the conductor for the flow of heat through it is called “Thermal resistance”.
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 3

Thermal resistance depends on
i) the nature of the material (i.e thermal conductivity K)
ii) the geometry of the object (d/A).

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 18.
State the units and dimensions of coefficient of convection. [Imp.Q]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 4

Question 19.
Define emissive power and emissivity. [Imp.Q]
Answer:
Emissive Power :
The energy radiated by a body per second per unit area of the body, at a given temperature and wave length, is called emissive power of the body.

Emissivity :
The ratio of the emissive power of a body to that of black body, at the same temperature is called Emissivity.

Question 20.
What is greenhouse effect? Explain global warming. [Imp.Q][TS 19; AP 15]
Answer:
Greenhouse effect :
The thermal radiation from earth’s surface absorbed by atmospheric greenhouse gases(carbon dioxide, methane, nitrous oxide) is re-radiated in all directions.

A part of this re-radiation reflects back towards the surface of the earth. It results in heating up of earth’s surface and atmosphere.

Global warming :
Global warming is the ‘observed and projected increase’ in the average temperature of Earth’s atmosphere and oceans. The Earth’s average temperature has increased by 0.3°C to 0.6°C since the beginning of this century’.

Question 21.
Define absorptive power of a body. What is the absorptive power of a perfect blackbody.
Answer:
Absorptive power :
The ratio between energy flux absorbed in certain time to total energy flux incident on the body in the same time is known as absorptive power.

The absorptive power of a black body is 1.

Question 22.
State Newton’s law of cooling. [TS 18, 19][AP 15, 16, 18, 20]
Answer:
Newton’s law of cooling states that the ‘rate of loss of heat of a hot body’ is directly proportional to the ‘difference in temperature’ between the ‘body and its surroundings’.

Question 23.
State the conditions under which Newton’s law of cooling is applicable. [TS 15]
Answer:
Newton’s law of cooling is applicable when

  1. Heat lost by the body is mainly due to convection
  2. Loss of heat is negligible by conduction
  3. The hot body is cooled by forced convection
  4. The temperature of every part of the body is same

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 24.
The roof of buildings are often painted white during summer. Why? [TS 15, 17][AP 16]
Answer:
White paint is a good reflector of heat. Good reflector is a bad absorber of heat.
So buildings that are painted white to keep cool during summer.

Short Answer Questions

Question 1.
Explain Celsius and Fahrenheit scales of temperature. Obtain the relation between Celsius and Fahrenheit scales of temperature. [TS 19, 22]
Answer:
Celsius scale :
This scale was invented by Celsius. It is used in scientific works. On this scale, the ice point is taken as 0°C and the steam point is taken as 100°C. This interval 100° is divided into 100 equal parts, each part corresponding to 1°C

Fahrenheit scale :
This was invented by Fahrenheit. lt is used in clinical works. On this scale, the ice point is taken as 32°F and the steam point is taken as 212°F. This interval 180° is divided into 180 equal parts, each part corresponding to 1°F.

Relation between Celsius and Fahrenheit scales:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 5
A relationship for converting temperature from one scale to the other may be obtained from a graph of Fahrenheit F
temperature versus Celsius temperature C is a straight line as shown in the figure, from graph
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 6
This equation is in the form of y = mx + c. So the graph is a straight line.

Question 2.
Two identical rectangular strips one of copper and the other of steel are riveted together to form a compound bar. What will happen on heating?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 7

  1. The coefficient of linear expansion of copper is greater than that of steel.
  2. Therefore, when bimetallic strip made of copper and steel is heated, copper strip expands more than the Before heating steel strip.
  3. Since the two are rivetted together, the bimetallic strip bends so as to allow more expansion in the copper strip.
  4. As a result, the copper strip lies on convex side of the bent bimetallic strip.

Question 3.
Pendulum clocks generally go fast in winter and slow in summer. Why? [TS 17, 19][AP 19]
Answer:

  1. The time period of pendulum clock is given by T = 2π\(\sqrt{\frac{l}{g}}\)
    At a given place, T ∝ √l (∵ g is constant)
  2. The pendulum of a clock expands in summer, so its time period increases.
    Hence, it makes less number of oscillations than required per day. Hence it will lose time or clock goes slow.
  3. The pendulum of a clock contracts in winter, its length decreases so its time period decreases. Hence, it makes more number of oscillations than required per day.
  4. Hence it will gain time or clock goes fast.

Question 4.
In what way is the anomalous behaviour of water advantageous to aquatic animals? [TS 18; AP 17, 18, 22]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 8

  1. When temperature increases from 0°C to 4°C water contracts instead of expansion. Hence water attains maximum density at 4°C. This is called anomalous behaviour of water.
  2. During winter, when the temperature of the atmosphere falls below 0°C, the surface of lakes and rivers gradually freezes to ice.
  3. But ice is bad conductor of heat. Under the frozen upper layers, the water remains in its liquid form and does not freeze.
  4. Thus aquatic animals like fish are survived in this water.

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 5.
Explain conduction, convection and radiation with examples. [AP 19, 20; AP, TS 15, 16, 20]
Answer:
Conduction :
The heat transfer from one place to another place without the actual movement of the particles is called conduction. [TS 18]
Ex: Heat transfer takes place from the hot end of the rod to the other end by conduction.

Convection :
The Heat transfer from one place to another place with the actual movement of particles is called convection. It is possible in only in fluids. Convection can be natural or forced. Ex: Sea breeze, Land breeze, Trade wind

Radiation :
Heat transfers from one place to another place without the help of the material of the medium is called Radiation. It arises due to electro magnetic radiation emitted by a body by virtue of tis temperature. Radiation is the quickest mode of heat transmission.
Ex: Transfer of heat energy from the Sun.

Question 6.
Write short notes on Triple point of water? [TS 15; AP 16]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 9
The point at which the three phases of matter co-exist in equilibrium is called Triple point.

Its coordinates for water are P (273.16K, 4.58 mm of Hg) A graph is drawn between temperature and pressure of a substance. It describes distinct phases of physical states at equilibrium and is called Phase diagram.

Ice Line(PB) :
The temperature at which the solid and liquid states are in equilibrium is called the Melting point. It is along the curve PB and is called ice line.

Steam Line (PA) :
The temperature at which liquid and vapour states are in equilibrium is called Steam point. It is along the curve PA and is called steam line.

Sublimation line :
The temperature at which solid and vapour states are in equilibrium is called Sublimation point. It is along the curve PC and is called sublimation line.

The 3 curves PB, PA and PC meet at a single point ‘P’, called the Triple point of water.

Long Answer Questions

1. State Boyle’s Saw and Charle’s law. Hence derive ideal gas equation. Which of the two laws is better for the purpose of thermometry and why? [AP, TS 15]
Answer:
Boyle’s law :
At a given temperature, the pressure of a given mass of a gas is inversely proportional to its volume. [AP 18]

Charles law :
At constant pressure, the volume of a given mass of a gas is directly proportional to its temperature (in Kelvin scale). [AP 18]

Ideal gas equation :
Consider one mole of an ideal gas initially at a pressure P0, volume V0 and temperature T0 (in Kelvin scale).
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 10

i) Keeping the pressure PQ constant, let the temperature of the gas be changed to T.

By Charles law, at constant pressure P0, the volume V0 at temperature T0 is changed to new volume V1 at temperature T. Then the relation between these quantities is as follows:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 11

The constant for one mole of the gas is denoted by R and is called Universal gas constant.
\(\frac{P_0V_0}{T_0}\) = R for one mole then equation (3) becomes \(\frac{PV}{T}\) = R

⇒ PV = RT …….. (4) This is the ideal gas equation for one mole of an ideal gas.
For ‘n’ moles of a gas, the ideal gas equation is given by PV = nRT ……… (5)

Charles law is better for the purpose of thermometry:
Because in case of Boyle’s law, temperature is kept constant. So it is not useful for thermometry. But incase of Charles law, by keeping volume constant, we can measure different temperatures at different pressures. Similarly, by keeping pressure constant, we can measure different temperatures at different volumes. So we can use Charles law for the purpose of thermometry.

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 2.
Explain thermal conductivity and coefficient of thermal conductivity.
A copper bar of thermal conductivity 401 W/(mK) has one end at 104°C and the other end at 24°C. The length of the bar is 0.10 m and the cross-sectional area is 10 x 10-6m². What is the rate of heat conduction along the bar?
Answer:
Thermal conductivity :
The ability to conduct heat in solids by conduction is called thermal conductivity.

Coefficient of thermal conductivity :
Consider a rectangular slab of area ‘A’. Its two faces ‘E’ and ‘F’ are maintained at temperatures θ2°C and θ1°C respectively [θ2°C > θ1°C ]. Let ‘Q’ be the amount of heat transmitted by conduction at steady state conditions between the faces ‘E’ and ‘F’ separated by a distance ‘d’ as shown in figure.
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 12

The amount of heat transmitted between these two faces by thermal conduction is directly proportional to
(i) the area of the cross-section of the slab ‘A’.
(ii) the temperature difference between the faces (θ2 – θ1)°C
(iii) the time of flow of heat(t)
(iv) inversely proportional to the distance between the two faces (d) i.e.,
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 13

Where ‘K’ is known as the coefficient of thermal conductivity.

Definition :
The coefficient of thermal conductivity of a material is defined as the quantity of heat flowing normally per second through unit area of the substance per unit temperature gradient.
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 14

Question 3.
State and explain Newton’s law of cooling. State the conditions under which Newton’s law of cooling is applicable. [TS 16, 22]
A body cools down from 60°C to 50″C in 5 minutes and to 40″C in another 8 minutes. Find the temperature of the surroundings. [May 13]
Answer:
Newton’s law of cooling :
Newton’s law of cooling states that the rate of loss of heat of a hot body is proportional to the difference in temperatures between the body and its surroundings. Here, the difference in temperatures should be small and the nature of the radiating surface should remain same.

If the average temperature of the body is T, temp, of its surrounding is TS and rate of loss of
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 15

Conditions for Newton’s law of cooling:

  1. Heat lost by the body is mainly due to convection
  2. Loss of heat is negligible by conduction
  3. The hot body is cooled by forced convection
  4. The temperature of every part of the body is same
  5. Temperature differences are moderate.

Problem:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 16

Exercise Problems

Question 1.
What is the temperature for which the readings on Kelvin and Fahrenheit scales are [May 2010]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 17
⇒ 9(F – 273.15) = 5(F – 32) ⇒ 9F – 9(273.15) = 5F – 5(32)
⇒ 4F = 9(273.15) – 5(32) ⇒ F = 574.6
∴ 574.6 K = 574.6° F

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 2.
Find the increase in temperature of aluminium rod if its length is to be increased by 1%. (a for aluminium = 25 × 10-6/°C). [AP 15, 22]
Solution:
Given that a = 25 × 10-6/°C
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 18

Question 3.
The mass of a litre of gas is 1.562g at 0″C under a pressure of 76 cm of mercury. The temperature is increased to 250″C and the pressure to 78cm of mercury. What is the mass of one litre of the gas under new conditions?
Solution:
Given that m1 = 1.562g, V1 = 1 L, P1 = 76cm of Hg.
T1 = 0°C = 273°K, P2 = 78cm of Hg, V2 = 1 L, T2 = 250°C = 250 + 273 = 523 K
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 19

Question 4.
The volume of a mass of gas at 37°C and a pressure of 75cm of mercury is 620cc. Find the volume at N.T.P.
Solution:
Given that P1 = 75cm ofHg. V1 = 620cc, T1 = 273 + 37 = 310°K At
At NTP, P2 = 76cm of Hg, T2 = 273K
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 20

Question 5.
How much steam at 100°C is to be passed into water of mass 100g at 20°C to raise its temperature by 5°C? (Latent heat of steam is 540 cal/g and specific heat of water is 1 cal/g°C).
Solution:
Given that t2 =100°C, m1 = 100g, t1 = 20°C, t3 = t1 + 5 = 20 + 5 = 25°C
L = 540 cal/gm, S = 1 cal/g°C.
Heat gained by cold body = Heat lost by hot body
If m is the mass of vapour to be added, then m1s (t3 – t1) = mL + ms (t2 – t3)
⇒ 100 × 1 × (25 – 20) = m(540 + 1 × (100 – 25)) ⇒ 500 = m(615)
⇒ m = \(\frac{500}{615}\) = 0.813gm

Question 6.
2kg of air is heated at constant volume. The temperature of air is increased from 293K to 313K. If the specific heat of air at constant volume is 0.718 k.J/kg K, find the amount of heat absorbed in kJ and keal. (J = 4.2 k.)/kcnl)
Solution:
Given tha, m = 2kg, T1 = 273 K, T2 = 313 K
Also, Cv = 0.718 kJ/Kg K, J = 4.2 kJ /k cal
∴ Q = mCv(T2 – T1) = 2 × 0.718 × (313 – 273) = 28.72 kJ = \(\frac{28.72}{4.2}\) = 6.838 k cal.

Question 7.
A clock with a brass pendulum keeps correct time at 200C but loses 8.212 sec per day, when the temperature rises to 300C. Calculate the coefficient of linear expan¬sion of brass.
Solution:
Time loss by the pendulum clock per a day = \(\frac{1}{2}\) α ∆t × 86400 sec
Given Time loss per a day = 8.212 sec, ∆t= (30 – 20) = 10°C
⇒ 8.212 = \(\frac{1}{2}\) α × 10 × 86400
∴ α = \(\frac{8.212\times2}{10\times86400}\) = 0.019 × 10-3 = 19 × 10-6/°C

Question 8.
If the volume of nitrogen of mass 14 kg is 0.4 m3 at 30°C, calculate the pressure.
Solution:
PV = nRT
Here V = 0.4 m³, T = 30 + 273 = 303K, R = 8.314 J/mole x K
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 21

Question 9.
A body cools from 60°C to 40″C in 7 minutes. What will be its temperature after next 7 minutes, if the temperature of its surrounding is 10°C?
Solution:
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 22

Question 10.
If the maximum intensity of radiation for a black body is found at 2.65 pm. Find the temperature of the radiating body. [TS 19]
Solution:
Given λm = 2.65 pm = 2.65 × 10-6 m
From Wein’s displacement law λm T = b
Where b is Wein’s constant, b = 2.9 × 10-3 mK,
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 23
= 1.094 × 10³ K = 1094 K

Multiple Choice Questions

Question 1.
The temperature at which the reading of a Fahrenheit thermometer will be double that of a centigrade thermometer is
1) 160°C
2) 180°C
3) 32°C
4) 100°C
Answer:
4) 100°C

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 2.
The variation of density of a solid with temperature is given by the formula
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 24
Answer:
1

Question 3.
Water has maximum density at
1) 4°C
2) 32°F
3) 0°C
4) 4°C
Answer:
1) 4°C

Question 4.
The apparent coefficient of expansion of a liquid, when heated in a copper vessel is ‘C’ and when heated in a silver vessel is ‘S’. If ‘A’ is the linear coefficient of expansion of copper, then the linear, coefficient of expansion of silver is
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 25
Answer:
2

Question 5.
The pressure of a given mass of gas is 100cm at 127°C. The pressure of the same mass of gas having the same volume at 27°C is
1) 75 cm
2) 76 cm
3) 84 cm
4) 64 cm
Answer:
1) 75 cm

Question 6.
A perfect gas at 27°C is heated at constant pressure so as to double its volume. The temperature of the gas will be
1) 273°C
2) 327°C
3) 237°C
4) 360°C
Answer:
1) 273°C

Question 7.
One mole of gas occupies 100ml at 50 mm pressure. The volume of 2 moles of the gas at 100 mm pressure and same temperature is
1) 50 ml
2) 100 ml
3) 200 ml
4) 500 ml
Answer:
2) 100 ml

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 8.
The pressure of a gas in a closed vessel is increased by 0.4%, if the temperature of the gas is increased by 1°C, the initial temperature of the gas is
1) 23°C
2) 250°C
3) -23°C
4) 300K
Answer:
3) -23°C

Question 9.
The temperature of the sun is about 6000K and maximum intensity is emitted at 4800A° from it. If the sun cools to 3000K, then the peak intensity would occur at
1) 4800A°
2) 9600A°
3) 2400A°
4) 19200A°
Answer:
1) 4800A°

Question 10.
If the temperature of the sun were to increase from T to 2T and its radius from R to 2R, then the ratio of the radiant energy received on earth to what it was previously will be
1) 4
2) 16
3) 32
4) 64
Answer:
4) 64

Question 11.
If λm denotes the wavelength at which the radiative emission from a black body at a temperature T K is maximum, then
1) λm = T4
2) λm is independent of T
3) λm ∝ T
4) λm ∝ T-1
Answer:
4) λm ∝ T-1

Question 12.
A black body has maximum wavelength λm at 2000 K. Its corresponding wavelength at 3000 K will be
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 26
Answer:
2

Question 13.
A black body at 1227°C emits radiations with maximum intensity at a wavelength of 5000 A°. If the temperature of the body is increased by 1000°C, the maximum intensity will be observed at
1) 3000 A°
2) 4000 A°
3) 5000 A°
4) 6000 A°
Answer:
1) 3000 A°

Question 14.
Mercury thermometer can be used to measure temperature upto
1) 260°C
2) 100°C
3) 360°C
4) 500°C
Answer:
3) 360°C

Question 15.
The value of coefficient of volume expansion of glycerin is 5 × 10-4 K-1. The fractional change in the density of glycerin for a rise of 40°C in its temperature, is
1) 0.025
2) 0.010
3) 0.015
4) 0.020
Answer:
4) 0.020

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 16.
The density of water at 20°C is 998 kg/m³ and at 40°C is 992 kg/m³. The coefficient of volume expansion of water is
1) 3 × 10-4/°C
2) 2 × 10-4/°C
3) 6 × 10-4/°C
4) 10-4/°C
Answer:
1) 3 × 10-4/°C

Question 17.
Thermal capacity of 40 g of aluminium (s = 0.2 cal/g K) is
1) 168 J/K
2) 672 J/K
3) 840 J/K
4) 33.6 J/K
Answer:
4) 33.6 J/K

Question 18.
If 1 g of steam is mixed with 1 g of ice, then resultant temperature of the mixture is
1) 100°C
2) 230°C
3) 270°C
4) 50°C
Answer:
1) 100°C

Question 19.
Equal masses of liquids A, B and C have temperatures 10°C, 25°C and 40°C respectively. If A and B are mixed, the mixtures has a temperature of 15°C. If B and C are mixed, the mixture has a temperature of 30°C. If A and C are mixed then the temperature of mixture is
1) 10°C
2) 35°C
3) 20°C
4) 25°C
Answer:
1) 10°C

Question 20.
Which of the following rods, (given radius r and length l) each made of the same material and whose ends are maintained at the same temperature will conduct most heat?
1) r = r0, l = l0
2) r = 2r0, l = l0
3) r = r0, l = 2l0
4) r = 2r0, l = 2l0
Answer:
4) r = 2r0, l = 2l0

Question 21.
The quantities of heat required to raise the temperature of two solid copper spheres of radii r( and r2 (r, = 1.5r2) through 1 K are in the ratio
1) 27/8
2) 9/4
3) 3/2
4) 5/3
Answer:
1) 27/8

Question 22.
A black body is at a temperature of 500K. It emits energy at a rate which is proportional to
1) (500)³
2) (500)4
3) 500
4) (500)²
Answer:
2) (500)4

Question 23.
If the temperature of the sun is doubled, the rate of energy received on earth will be increased by a factor of
1) 2
2) 4
3) 8
4) 16
Answer:
4) 16

Question 24.
A bimetallic strip is formed out of two identical strips one of copper and the other of brass. The coefficient of linear expansion of the two metals αc and αb. On heating, the temeprature of the strip increases by ∆t and strip bends in the form of axe of radius R. Then R is proprotional to
AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter 27
Answer:
2

AP Inter 1st Year Physics Important Questions Chapter 12 Thermal Properties of Matter

Question 25.
A glass Hast if volume one litre is filled completely with mercury at 0°C, the flask is heated 100°C. Coefficient of volume expansion of mercury is 1.82 × 10-4/°C and coefficient of linear expansion of glass is 0.1 × 10-4/°C .During this process amount of mercury which over flask is
1) 450
2) 1000
3) 1800
4) 225
Answer:
3) 1800

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Students get through AP Inter 1st Year Physics Important Questions 11th Lesson Mechanical Properties of Fluids which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 11th Lesson Mechanical Properties of Fluids

Very Short Answer Questions

Question 1.
Define average pressure. Mention it’s unit and dimensional formula. Is it a scalar or a vector?
Answer:
The average pressure is defined as the normal force acting per unit area.
Pavg = \(\frac{F}{A}\)
S.I unit: Nm-2 (or) Pascal
Dimensional formula: [ML-1T-2]
It is a scalar quantity.

Question 2.
Define Viscosity. What are it’s units and dimensions? [May 13][AP, TS 15, 16, 18]
Answer:
Viscosity :
The property of a fluid which opposes the relative motion between different layers is called viscosity.
The S.I unit of viscosity is poiseiulle (pi) (or) pa s The dimensions of viscosity are [ML-1T-1]

Question 3.
What is the principle behind the carburetor of an automobile? [TS 17, 18; AP 15, 19, 19]
Answer:
The carburetor of an automobile works on Bernoulli’s principle.

Working :
The carburetor of automobile has a Venturi channel(nozzle) through which air flows with a large speed. The pressure is lowered at the narrow neck and the petrol is sucked up in the chamber to provide the correct mixture of air to fuel necessary for combustion.

Question 4.
What is magnus effect? [AP 15; TS 16, 19, 22]
Answer:
When a ball is moving forward with spinning then the velocity of air above the ball is larger and below it is smaller. Stream lines thus get crowded above and rarified below. This difference in the velocities of air results in the pressure difference between the lower and upper faces and there is a net upward force on the ball. This dynamic lift due to spinning is called Magnus effect.

Question 5.
Why arc drops and bubbles spherical? [IPE’ 13, 14, 14][AP, TS 16, 17, 18, 22]
Answer:
Due to surface tension rain drops and water bubbles are spherical in nature.

For a given volume, Sphere has minimum surface area. So liquid drops attain spherical shape.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 6.
Give the expression for the excess pressure in a liquid drop. [Imp.Q][TS 17, 20]
Answer:
Liquid drop in air has one interface.
Hence excess pressure in a liquid drop = Pinside – Poutside ⇒ Pexcess = \(\frac{2T}{r}\)
Where r = radius of a liquid drop
T = surface tension of liquid-air interface.

Question 7.
Give the expression for the excess pressure in an air bubble inside the liquid. [Imp.Q]
Answer:
An air bubble inside the liquid has only one free surface.
The excess pressure is Pexcess = \(\frac{2T}{r}\)

Question 8.
Give the expression for the excess pressure in the soap bubble in air. [AP 19; TS 16, 22]
Answer:
Soap bubble in air has two interfaces.
Hence excess pressure in soap bubble = Pinside – Poutside ⇒ Pexcess = \(\frac{2T}{r}\)
Where r = radius of soap bubble;
T = surface tension of liquid-air interface.

Question 9.
What are water proofing agents and water wetting agents? What do they do? [AP 20]
Answer:
Water proofing agents are materials or fabrics that are impervious (not allowing fluid to pass through) to water. They increase the angle of contact between the water and fibres. Water Wetting agents are Soaps, detergents, and dying substances.
They increase penetrating and spreading ability.
They reduce the angle of contact as well as the surface tension of water.

Question 10.
Why water droplets wet the glass surface and does not wet lotus leaf? [TS 15]
Answer:
For glass surface angle of contact θ < 90°. So water drops wet the glass.
For lotus leaf angle of contact θ > 90°. So water drops does not wet the lotus leaf.

Question 11.
What is angle of contact? [TS 20][IPE, 14][AP 16]
Answer:
Angle of contact :
When a solid body is dipped in a Liquid,the angle between solid surface and the tangent drawn to the liquid surface, at the point of contact, inside the liquid, is called Angle of contact.
For Pure Water and glass, angle of contact is 0°.
For Mercury, angle of contact is 140°.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 12.
Mention any two examples that obey Bernoullis theorem and justify them. [Imp.Q][AP 18]
Answer:
Examples:
1) In heavy winds, house roofs are blown off, when the velocity of wind is greater on the rooftop than inside the house. Then the pressure on the rooftop becomes less than that inside the house. This pressure difference causes the dynamic lift and hence the roof is blown off.

2) When fan is rotating, papers are blown off the table top. The velocity of wind on the paper increases due to fan and hence pressure decreases.

Question 13.
When water flows through a pipe, which of the layers moves fastest and slowest?
Answer:
The water layer which is in contact with the walls of the pipe moves slower.
And the Central layer moves faster.

Question 14.
Terminal velocity is more if surface area of the body is more. True or false? Give reason. [Imp.Q]
Answer:
True.
Terminal velocity vt ∝ r² ⇒ vt ∝ 4πr² ⇒ Vt ∝ A, [Since, A = 4πr² = surface area of sphere]

Short Answer Questions

Question 1.
What is atmospheric pressure and how is it determined using Barometer? [Imp.Q]
Answer:
The pressure of atmosphere at any point is equal to the weight of air column of unit cross-sectional area extending from that point to the top of the atmosphere.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 1

Barometer :
Mercury barometer consists of a long glass tube closed at one end and filled with mercury. It is inverted into a trough of mercury as shown in figure. The space above the mercury column in the tube contains only mercury vapour whose pressure(P) may be neglected. Points A and B are at same level.
Hence pressure at A = pressure at B
Pa = hρg
Where ρ = density of mercury
h = height of the mercury column in the tube
pa = atmospheric pressure

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 2.
What is gauge pressure and how is a manometer used for measuring pressure difference. [Imp.Q]
Answer:
The excess pressure (P – Pa) at a depth below the surface of a liquid open to the atmosphere is called a ‘gauge pressure’ at that point.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 2

Manometer:
An open-tube manometer consists of a U-tube containing a suitable liquid. One end of the tube is open to the atmosphere and other end is connected to the system whose pressure we want to measure.
The pressure at A = pressure at B
P = Pa + hρg ⇒ P – Pa = hρg ∴ Gauge pressure = hρg
This gauge pressure is proportional to difference in heights(h) of mercury levels in manometer.

Question 3.
State Pascal’s law and verify it with the help of an experiment. [Imp.Q]
Answer:
Pascal’s law :
The pressure in a fluid at rest is the same at all points if they are at the same height.

Verification :
Consider an element ABCDEF in the form of a right-angled prism in the interior of a fluid at rest. This element is small so that the effect of gravity can be ignored. The areas of faces BEFC, ADFC and ADEB are Aa, Ab and Ac respectively. The fluid exerts pressures Pa, Pb and Pc on this element corresponding to the normal forces Fa, Fb and Fc as shown in figure.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 3
Hence pressure exerted is same in all directions in a fluid at rest.

Question 4.
Explain hydraulic lift and hydraulic brakes.
Answer:
Hydraulic lift :
In a hydraulic lift two pistons are separated by the space filled with a liquid. A piston of small cross-section A1 is used to exert a force F1 directly on the liquid. According to Pascals law, the pressure is transmitted through the liquid to a larger piston of area A2. The upward force exerted on larger piston is
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 4

Thus a small force F1 applied on the smaller piston can be used to exert a large force F2 on the bigger piston. This is the principle of a hydraulic machine.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 5

Hydraulic brakes :
When a small force is applied on the pedal with our foot the master piston moves inside the master cylinder. Then the pressure caused is transmitted through the brake oil to act on a piston of larger area.

A large force acts on the piston and is pushed down expanding the brake shoes against brake lining. In this way a small force on the pedal produces a large retarding force on the wheel.

Question 5.
What is hydrostatic paradox? [TS 19]
Answer:
Hydrostatic paradox :
It states that the liquid pressure is same at all points at the same horizontal level (same depth) and is independent of the shape of the container (or) base area.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 6
Illustration of hydrostatic paradox:
Consider three vessels A, B and C of different shapes as shown in figure. They are connected at the bottom by a horizontal pipe.On filling with water, the level in the three vessels is the same, though they hold different amounts of water. This is so because water at the bottom has the same pressure below each section of the vessel.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 6.
Explain how pressure varies with depth.
Answer:
Consider a fluid at rest in a container. The pressures at points 1 and 2 are p1 and p2 respectively. Consider a cylindrical element of fluid having area of base A and height h. The horizontal forces acting on the cylindrical surface of the fluid column are mutually balanced. Three vertical forces acting on cylindrical element are

  1. Force P1 A acts vertically downwards on the top face of the column.
  2. Force P2A at the bottom face acts vertically upwards.
  3. Weight mg of the fluid acts vertically downwards through the centre of gravity of the cylindrical column.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 7
Since the element under consideration is in equilibrium.
∴ ∑FY = 0
P1A + mg – P2A = 0 (or) (P2 – P1)A = mg
If ρ is the density of the fluid then mass of the fluid is m =(Vol) ρ = (Ah)ρ
Then (P2 – P1)A = (Ah)ρ g
(or) P2 – P1 = hρ g ……… (1)
If the point 1 is shifted to the top of the fluid which is open to the atmosphere then P1 = Pa = Atmospheric pressure and we may replace p2 by p.
Then equ(1) gives P – Pa = hpg (or) P = Pa + hρg ………. (2)
Thus the pressure at a point inside a fluid increases with the depth from the free surface.

Question 7.
What is Torricelli’s law? Explain how the speed of efflux is determined with an experiment.
Answer:
Torricelli’s Law :
The efflux velocity of a liquid through an orifice (small hole) of a vessel is equal to the velocity acquired by a freely falling body from a height which is equal to that of liquid level from the orifice.

Let P1, v1 and h1 be the pressure, velocity and height of liquid level at the surface of the liquid.
Let P2, v2 and h2 be the corresponding values at the orifice.
Let ‘ρ‘ be the density of the liquid.

According to Bernoulli’s equation
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 8

Question 8.
What is Venturi meter? Explain how it is used. [Imp.Q]
Answer:
The Venturi-meter is a device used for measuring the speed of incompressible fluid How. The Venturi meter consists of a tube with a broad diameter and a small constriction at the middle. A manometer in the form of a U-tube is also attached to it with one arm at the broad neck point of the tube and the other at constriction as shown in figure. The manometer contains a liquid (mercury) of density ρm. Let A1, P1, and V1 be the cross-sectional area, fluid pressure and speed of fluid at the broad neck respectively. Let A2, P2, and V2 be the cross-sectional area, fluid pressure and speed of fluid at the constriction respectively.
According to equation of continuity
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 9

Question 9.
What is Reynold’s number? What is it’s significance? [Imp.Q]
Answer:
Reynolds number is a dimensionless number which determines the type of flow of liquid through a pipe.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 10

Significance:

  1. For a laminar flow the value of Reynold’s number less than 1000.
  2. For values of RC greater than 2000, the flow will be turbulent.
  3. For values of RC lies between 1000 and 2000 the flow is unstable and switches from laminar flow to turbulent and vice-versas.
  4. Reynolds number gives the ratio of inertial force and viscous force for a fluid in motion.
  5. It has been found that geometrically similar flows become turbulent at the same critical value of RC. This fact permits us to set up small scale laboratory model to study the character of fluid flow as well as to design ships, submarines, racing cars and aeroplanes.

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 10.
Explain dynamic lift with example.
Answer:
Dynamic Lift :
Dynamic lift is the force that acts on a body by virtue of its motion through a fluid.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 11

Lift on aircraft wing:

  1. The wings of the aeroplane are designed in such a way that the streamlines are clustered on the upper side giving rise to a low pressure.
  2. The wing has a curved part on the upper surface as shown in figure
  3. As the aeroplane moves fast on the runway, the velocity of air is more at the upper surface of the wings than at its bottom.
  4. According to Bemoullis principle, the pressure is less on the upper surface of wing and more on the bottom. The difference in pressure produces the required dynamic lift and allows the aeroplane to take off.

Question 11.
Explain surface tension and surface energy. [Imp. Q]
Answer:
Surface Tension :
The tangential force per unit length, acting at right angles on either side of a line, imagined to be drawn on the free liquid surface in equilibrium is called surface tension of the liquid.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 12
C.G.S Unit: dyne/cm
S.I Unit: N/m
Dimensional formula: [ML°T-2]

Surface energy :
The amount of work done against the force of surface tension in increasing the liquid surface of a given area at a constant temperature is called the “surface energy”.
Surface Energy E = \(\frac{W}{A}\) S.I. unit = Joule/m²

Question 12.
Explain how surface tension can be measured experimentally.
Answer:
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 13

  1. The experimental arrangement to measure the surface tension of the liquid-air interface is as shown in figure.
  2. A flat vertical glass plate is suspended from one arm of the balance just above the liquid in a vessel.
  3. The plate is balanced by weights on the other side, so that horizontal edge of the glass plate just over the liquid.
  4. The vessel is slightly raised till the liquid just touches the glass plate.
  5. Then the glass plate is pulled down a little because of surface tension.
  6. Weights are added till the plate just clear water. If additional weight required is W then the surface tension of the liquid-air interface is
    T = \(\frac{W}{2l}=\frac{mg}{2l}\)
    Where ‘m’ is the extra mass and 7’ is the length of the glass plate edge.

Long Answer Questions

Question 1.
State Bernoulli’s principle. From conservation of energy in a fluid flow through a tube arrive Bernoulli’s equation. Give an application of Bernoulli’s theorem. [AP 15]
Answer:
Bernoulli’s Principle :
For an ideal fluid flow, the total energy( the sum of the pressure energy, kinetic energy, and potential energy) per unit volume of the fluid remains constant at all points in the path of the flow.

The Bernoulli’s equation: \(\frac{\mathrm{P}}{\rho}\) + gh + \(\frac{1}{2}\)v² = Constant.

Consider a nonviscous and incompressible fluid flowing steadily in a tube of non-uniform cross-section.

The liquid enters the tube at the end ‘A’ of cross sectional area ‘A1‘ at a height ‘h1‘ with a velocity ‘v1’, and leaves the tube at narrow end ‘B’ of cross sectional area A2, at a height h2, with a velocity v2.

The mass of the fluid entering into the tube = The mass of the fluid leaving the tube.
⇒ m = ρ1A1v1dt = ρ2A2v2dt
Fluid is incompressible ρ1 = ρ2 = ρ
According to equation of continuity A1v1 = A2v2 = \(\frac{\mathrm{m}}{\rho}\) ……. (1)

Pressure Energy :
Work done on the fluid due to pressure energy at A = P1A1v1
Work done on the fluid due to pressure energy at B = P2A2v2
Net work done due to pressure difference per second = P1A1v1 – P2A2v2 = P1\(\frac{\mathrm{m}}{\rho}\) – P2\(\frac{\mathrm{m}}{\rho}\) ……… (2)

Kinetic Energy Kinetic energy of the liquid per second at A = \(\frac{1}{2}\)mv1²
Kinetic energy of the liquid per second at B = \(\frac{1}{2}\)mv2²
∴ Gain in Kinetic energy = \(\frac{1}{2}\)m(v2² – v1²) ………….. (3)

Potential Energy :
Potential energy of the liquid per second at A = mgh1
Potential energy of the liquid per second at B = mgh2
Loss in Potential energy per second = mgh1 – mgh2 ……… (4)
According to law of conservation of energy
Loss in Potential Energy + Loss in Pressure Energy = Gain in Kinetic Energy
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 15

Application of Bernoulli’s theorem: [TS 15]
Dynamic Lift on air foil (or) an air craft :
An air foil or an air craft wing has a cross-sectional shape which has concave shape at the bottom.

According to Bernoulli’s equation, the pressure above the wings becomes less than the pressure below the wings. Due to this pressure difference, aeroplane is lifted up.

Dynamic Lift on a spinning ball :
Let a ball moves with certain velocity (v) in air. Stream lines are formed due to its spins.

According to Bernoulli’s principle, if the velocity of the fluid is high, the pressure is low, and vice versa. Here the pressure at the top is less when compared with at the bottom of the ball. Here the net upward force acting on the ball is called Dynamic lift.

Question 2.
Define coefficient of viscosity. Explain Stoke’s law and explain the conditions under which a raindrop attains terminal velocity. Give the expression for terminal velocity.
Answer:
Coefficient viscosity :
The coefficient of viscosity is defined as the tangential force per unit area of the layer required to maintain unit velocity gradient.
η = \(\frac{(\mathrm{F} / \mathrm{A})}{\left(\frac{\mathrm{dV}}{\mathrm{dx}}\right)}\)

Stoke’s Law :
According to Stoke’s law, the viscous force (F) acting on a small spherical body moving in a fluid is directly proportional to
i) coefficient of viscosity of fluid(η)
(ii) radius of the spherical body(r)
iii) velocity of the body(V) i.e., Fv ∝ ηrv
It can be derived using dimensional analysis (or) Fv = Kηarbvc.
[MLT-2] = K(ML-1T-1)a(L)b(LT-1)C (or) Fv = Kηrv
Where K is a proportionality constant.
Experimentally, the value of K was found to be 6π.
Hence, Fv = 6πηrv
This relation is known as Stoke’s law.

Expression for Terminal velocity :
Consider a spherical raindrop of radius ‘r’ and density p falling under gravity through a fluid of density ρ0
Now the forces acting on the raindrop are
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 16

i) Weight of the drop (W) acting downward W = \(\frac{4}{3}\)πr³ρg …………. (1)
ii) Force of buoyancy (FB) acting upward FB = \(\frac{4}{3}\)πr³ ρ0g ……….. (2)
iii) Viscous force of the fluid (Fv) acting upward
Fv = 6πηrv (According to Stoke’s law)
InitiallyW > FB + Fv and the spherical rain drop keeps on falling with acceleration
a = \(\frac{W-(F_v+F_B)}{m}\)
Where ‘m’ is the mass of the sphere.
The sphere continuously gains velocity which results in increase in the value of Fv.
For a given value of Fv we get W = FB + Fv
The resultant force then becomes zero and the spherical raindrop acquires constant velocity which is known as terminal velocity.
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 17

Solved Problems

Question 1.
What is the pressure on a swimmer 10m below the surface of a lake?(Take g = 10ms-2)
Solution:
Pressure P = Pa + pρh
Here Pa = 1.01 × 105 Pa, h = 10 m, ρ = 1000 kgm-3
P = 1.01 × 105 + 1000 × 10 × 10 = 2.01 × 105 Pa ≅ 2 atm

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 2.
The density of the atmosphere at sea level is 1.29 kg/m³. Assume that it does not change with altitude. Then how high would the atmosphere extend?
Solution:
Pa = ρgh
Here Pa = 1.01 × 105 Pa, g = 9.8 m/s², ρ = 1.29 kg/m³.
1.01 × 105 = 1.29 × 9.8 × h
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 18

Question 3.
Two syringes of different cross sections and lengths filled with water are connected with a tightly fitted rubber tube filled with water. Diameters of the smaller piston and larger piston are 1 cm and 3 cm respectively. Find the force exerted on the larger piston when a force of 10 N is applied to the smaller piston.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 19

Question 4.
Sn a car lift compressed air exerts a force F1 on a small piston having a radius of 5.0 cm. This pressure is transmitted to a second piston of radius 15cm. If the mass of the car to be lifted is 1350 kg. Calculate F1. What is the pressure necessary to accomplish this task? (g = 9.8 ms-2)
Solution:
Since pressure is transmitted undiminished throughout the fluid,
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 20
This is almost double the atmospheric pressure.

Exercise Problems

Question 1.
Calculate the work done in blowing a soap bubble of diameter 0.6cm against the surface tension T . (Surface tension of soap solution = 2.5 × 10-2 Nm-1)
Solution:
Given surface tension T =2.5 × 10-2 Nm-1
Diameter of at soap bubble = 0.6cm = 0.6 × 10-2m
⇒ Radius of soap bubble r = 0.3 × 10-2m.
Workdone W = 8πr²T = 8 × 3.14 × (0.3 × 10-2)² × 2.5 × 10-2 = 5.652 × 10-6 joule.

Question 2.
How high does methyl alcohol rise in a glass tube of diameter 0.06 cm? (Surface tension of methyl alcohol = 0.023 Nm-1 and density = 0.8 gmcm-3. Assume that the angle of contact is zero)
Solution:
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 21

Question 3.
What should be the radius of a capillary tube, if the water has rise the height of 6cm in it? Surface tension of water = 7.2 × 10-2N/m, g = 10m/sec². [May 2010]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 22

Question 4.
Find the depression of the meniscus in the capillary tube of diameter 0.4 mm dipped in a beaker containing mercury. (Density of mercury = 13.6 × 10³kg m-3 and surface tension of mercury = 0.49 Nm-1 and angle of contact = 135°)
Solution:
Diameter of the capillary tube = 0.4mm = 0.4 × 10-3m.
⇒ Radius of the capillary tube r = 0.2 × 10-3m.
Density of mercury ρ = 13.6 × 10³kg/m
Surface tension T = 0.49 Nm-1
Angle of contact θ = 135°m
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 23

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 5.
If the diameter of a soap bubble is 10 mm and its surface tension is 0.04 Nm-1, find the excess jpressure inside the bubble. [AP 15][TS 16,18]
Solution:
Given r = 5 mm = 5 × 10-3 m,
T = 0.04 Nm-1
The excess pressure inside the bubble P = \(\frac{4T}{r}\)
∴ P = \(\frac{4 \times 0.04}{5 \times 10^{-3}}\) = 32Nm-2

Question 6.
If work done by an agent to form a bubble of radius R is W, then how much energy is required to increase its radius to 2R?
Solution:
Work done to form a bubble W = 2(4πR²)T
Energy required to increase its radius to 2R is
W¹ =8rfT(R²2 – R²1)
= 8πT[(2R)² – R²] = 3[8πR²T] = 3W

Question 7.
If two soap bubbles of radii R1 and R2 (in vacuum) coalesce under isothermal conditions, what is the radius of the new bubble. Take T as the surface tension of soap solution.
Solution:
Work done in forming a soap bubble of radius, R1 is W1 = 8nR²1T
Word done in forming a soap bubble of radius R2 is W2 = 8πR²2T
Total work done w = W1 + W2 = 8πR²1T + 8πR²2T = 8π(R²1 + R²2)T
If the radius of bubble after merging is R then the work done in forming a soap bubble of radius R is W = 8πR²T
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 24

Multiple Choice Questions

Question 1.
If the surface tension of a soap water is 0.04 Nm-1. The excess pressure inside a 10mm diameter soap bubble in Nm-2 will be
1) 4
2) 16
3) 8
4) 32
Answer:
4) 32

Question 2.
The rise of a liquid due to surface tension in a narrow capillary tube of diameter’d’ is ‘h’. If the diameter is reduced to d/2 the rise will be
1) h
2) 2h
3) h/2
4) h/3
Answer:
2) 2h

Question 3.
If the surface tension of water is 73 × 10-2Nm-1, the excess pressure inside a spherical drop of water of radius 1mm is …… N/m²
1) 14
2) 7.3
3) 41
4) 7 × 10-2
Answer:
1) 14

Question 4.
The angle of contact between pure water and clean glass is
1) 90°
2) 0°
3) 15°
4) 137°
Answer:
2) 0°

Question 5.
If temperature of a liquid is increased, then its surface tension in gerteral
1) decreases
2) increases
3) remaining the same
4) increasing and then decreases
Answer:
1) decreases

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 6.
Surface tension arises due to
1) adhesive molecule forces
2) cohesive molecular forces
3) gravitational forces
4) molecular forces
Answer:
2) cohesive molecular forces

Question 7.
8000 identical water drops are combined to from a big drop. Then the ratio of final surface energy to the initial surface energy of all the drops together is
1) 1 : 10
2) 1 : 15
3) 1 : 20
4) 1:25
Answer:
3) 1 : 20

Question 8.
The surface energy of liquid film on a ring of area 0.15m²is (surface tension of liquid is equal to 5Nm-1)
1) 0.75J
2) 1.5J
3) 2.25J
4) 3.0J
Answer:
2) 1.5J

Question 9.
A mercury drop of radius lcm is sprayed into 106 drops of equal size, the energy expended in joules is (surface tension of mercury is 460 × 10-3Nm-1)
1) 0.057
2) 5.7
3) 5.7 × 10-4
4) 5.7 × 10-6
Answer:
1) 0.057

Question 10.
The work done increasing the size of a rectangular soap film with dimensions 8cm × 3.75cm to 10 cm × 6cm is 2 × 10-4 J. The surface tension of the film in Nm-1 is
1) 1.65 × 10-2
2) 3.33 × 10-2
3) 6.6 × 10-2
4) 8.25 × 10-2
Answer:
2) 3.33 × 10-2

Question 11.
Drops of liquid of density ’d’ are floating half immersed in a liquid of density ρ. If the surface tension of the liquid is T, then the radius of the drop is
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 25
Answer:
3

Question 12.
Two soap bubbles are blown. In the first soap bubble excess pressure is 4 times of the second soap bubble. The ratio of radii of the first and .Second soap bubble is
1) 1 : 4
2) 1 : 2
3) 2 : 1
4) 4 : 1
Answer:
1) 1 : 4

Question 13.
An aeroplane of mass 3 × 104kg and total wing area 120m² is in a level flight at some height. The difference in pressure between the upper and lower surfaces of its wings in kilo pascal is (g = 10m/s²)
1) 2.5
2) 5.0
3) 10.0
4) 12.5
Answer:
1) 2.5

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 14.
The speed of air flow on the upper and lower surface of wing of an aeroplane V1 and V2 respectively. If A is the area of cross-section of the wire and p is the density of air, then the upward lift is
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 26
Answer:
3

Question 15.
Water in a river 20m deep is flowing at a speed of 10ms-1. The shearing stress between the horizontal layers of water in the river in Nm-2, is (coefficient of viscosity of water = 10-3 SI units)
1) 1 × 10-2
2) 0.5 × 10-2
3) 1 × 10-3
4) 0.5 × 10-3
Answer:
4) 0.5 × 10-3

Question 16.
A large tank filled with water to a height ’h’ is to be emptied through a small hole at the bottom. The ratio of times taken for the level of water to fall from h to h/2 and from h/2 to zero is
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 27
Answer:
3

Question 17.
A cylinder of weight 20m is completely filled with water. The velocity of efflux of water in (in ms-1) through a small hole on the side wall of the cylinder near its bottom is
1) 10 ms-1
2) 20 ms-1
3) 25.5 ms-1
4) 5 ms-1
Answer:
2) 20 ms-1

Question 18.
A rectangular film of liquid is extended from (4 cm × 2 cm) to (5 cm × 4 cm). If the work done is 3 × 10-4J, the value of the surface tension of the liquid is
1) 0.250 Nm-1
2) 0.125 Nm-1
3) 0.2 N m-1
4) 8.0 Nm-1
Answer:
2) 0.125 Nm-1

Question 19.
A capillary tube of radius r is immersed in water and water rises in it to a height h. The mass of the water in the capillary is 5g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in this tube is
1) 2.5 g
2) 5.0 g
3) 10.0 g
4) 20.0 g
Answer:
3) 10.0 g

Question 20.
A small hole of area of cross-section 2 mm² is present near the bottom of a fully filled open tank of height 2 m. Taking g = 10 m/s², the rate of flow of water through the open hole would be nearly
1) 6.4 × 10-6m³/s
2) 12.6 × 10-6 m³/s
3) 8.9 × 10-6m³/s
4) 2.23 × 10-6 m³/s
Answer:
2) 12.6 × 10-6 m³/s

Question 21.
The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 28
Answer:
4

Question 22.
The wettability of a surface by a liquid depends primarily on
1) density
2) angle of contact between the surface and the liquid
3) viscosity
4) surface tension.
Answer:
2) angle of contact between the surface and the liquid

Question 23.
Water rises to a height h in capillary tube. If the length of capillary tube above the surface of water is made less than h, then
1) water rises upto a point a little below the top and stays there
2) water does not rise at all
3) water rises upto the tip of capillary tube and then starts overflowing like a fountain
4) water rises upto the top of capillary tube and stays there without overflowing.
Answer:
3) water rises upto the tip of capillary tube and then starts overflowing like a fountain

AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids

Question 24.
Terminal velocity of a liquid drop of radius ‘r’ falling through air is V. If two such drops are combined to form a bigger drop, the terminal velocity with which the bigger drop falls through air is (Ignore buoyant force due to air)]
AP Inter 1st Year Physics Important Questions Chapter 11 Mechanical Properties of Fluids 29
Answer:
3

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Students get through AP Inter 1st Year Physics Important Questions 10th Lesson Mechanical Properties of Solids which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 10th Lesson Mechanical Properties of Solids

Very Short Answer Questions

Question 1.
State Hooke’s law of elasticity. [Imp.Q]
Answer:
Hooke’s Law Within the elastic limit, the stress is directly proportional to strain.
stress ∝ strain ⇒ stress = E (strain). Here E is called as modulus of elasticity.

Question 2.
State the units and dimensions of stress. [Imp.Q]
Answer:
Stress:
C.GS Unit : dyne cm-2
S.I Unit : N m-2 (or) pascal
Dimensional Formula : [ML-1T-2]

Question 3.
State the units and dimensions of modulus of elasticity. [Imp.Q]
Answer:
Modulus of elasticity :
C.GS Unit : dyne cm-2
S.I Unit : N m-2 (or) pascal
Dimensional formula: [ML-1T-2]

Question 4.
State the units and dimensions of Young’s modulus. [Imp.Q]
Answer:
Young’s modulus :
C.GS Unit : dyne cm-2
S.I Unit : N m-2 (or) pascal
Dimensional formula : [ML-1T-2]

Question 5.
State the units and dimensions of modulus of rigidity. [Imp.Q]
Answer:
Rigidity modulus :
C.GS Unit : dyne cm-2
S.I Unit : N m-2 (or) pascal
Dimensional formula : [ML-1T-2]

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 6.
State the untis and dimensions of Bulk modulus. [Imp.Q]
Answer:
Bulk modulus :
C.GS Unit : dyne cm-2
S.I Unit : N m-2 (or) pascal
Dimensional formula : [ML-1T-2]

Question 7.
State the examples of nearly perfect elastic and plastic bodies. [Imp.Q]
Answer:
The nearest approach to a perfectly elastic body is a “quartz fiber”.
Examples of nearly perfect plastic bodies are clay and Dough.

Short Answer Questions

Question 1.
Define Hooke’s Law of elasticity, proportionality limit, permanent set and Breaking stress. [Imp.Q]
Answer:
Hooke’s Law :
Within the elastic limit, the stress is directly proportional to the strain.
Thus, stress ∝ strain ⇒ stress = E (strain)

Proportionality limit :
The maximum stress on the wire, upto which stress is propotional to strain, and Hooke’s law is obeyed, is called “Proportionality limit”.

Permanent set :
The permanent deformation that is produced in the wire, when it is stretched beyond elastic limit, is called “Permanent set”.

Breaking stress :
The stress, for which the wire breaks, is called “Breaking stress”.

Question 2.
Define modulus of elasticity, stress, strain and Poisson’s ratio. [Imp.Q]
Answer:
Modulus of elasticity (E) :
Within the elastic limit, the ratio of stress and strain is called “Modulus of elasticity”.

Stress :
It is defined as the restoring force developed in the body per unit area.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 1

Strain :
The ratio of change in the dimension of a body to the original dimension is called strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 2

Poisson’s ratio (σ):
The ratio of lateral strain to the longitudinal strain of a body is called “poisson’s ratio”.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 3

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 3.
Define Young’s modulus, Bulk modulus and Shear Modulus. [Imp.Q]
Answer:
Young’s modulus (Y) :
With in the elastic limit, Young’s modulus is the ratio of longitudinal stress to the longitudinal strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 4

Bulk modulus (K) :
With in the elastic limit, Bulk modulus is the ratio of volume stress to volume strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 5

Shear Modulus (Rigidity modulus (η) :
With in the elastic limit, Rigidity modulus is the ratio of Tangential stress to she Shear strain
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 6

Question 4.
Define Stress and mention the types of Stress.
Answer:
Stress :
Stress is defined as the restoring force developed in the body per unit area

1) Longitudinal stress or Tensile stress :
The stress produced with in the body, when its length is changed by applying force normal to the surface of a body is Longitudinal stress.

2) Bulk stress (or) Volume stress :
The stress produced with in the body, when its volume is changed by applying force normally and uniformly all over its surfaces is called Bulk stress.

3) Shear stress (or) Tangential stress :
The stress produced with in the body, when its shape is changed by applying tangential force on its surface is called Shear stress.

Question 5.
Define strain and explain the types of strain. [AP 22; TS 16]
Answer:
Strain :
The ratio of change in the dimension of a body to the original dimension is called strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 7

Different types of strain :
i) Longitudinal strain :
The ratio of the change in length of a body to the original length of the body is called longitudinal strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 8

ii) Volume strain :
The ratio of the change in volume of a body to the original volume of the body is called longitudinal strain.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 9

iii) Shearing strain :
Shearing strain is the ratio of the displacement of a layer to its distance from the fixed layer.
Shearing strain θ = \(\frac{x}{l}\)

Question 6.
Define strain energy and derive the equation for the same. [TS 18, 19, 19]
Answer:
Strain energy :
The energy stored in a body due to its deformation is called ‘strain energy’.

Expression for strain energy :
Consider a thin uniform wire of length / and area of cross-section A fixed at one end. Let ‘F’ be the force acting on the free end of a wire.
Work done to produce a small extension ‘de’ is dW= F de
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 10

Question 7.
Explain why steel is preferred to copper, brass, aluminium in heavy-duty machines and in structural designs.
Answer:
A large force is required for steel as compared with copper, brass and aluminium wires having the same cross-sectional area to produce the same strain. It means that steel is more elastic than copper, brass and aluminium. Hence steel is preffered in heavy-duty designs.

Question 8.
Describe the behaviour of a wire under gradually increasing load. [Imp.Q][TS 20, 22; AP. TS 15, 16, 17, 18, 20]
Answer:
Consider a wire suspended from a rigid support and loaded at the other end.
Suppose the load is increased gradually until it breaks.
A graph is plotted between strain on the X-axis and the stress on the Y-axis.
The nature of graph is shown here.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 11

Behaviour of a wire under increasing load:
1) Proportionality limit(OP) :
The part OP is a straight line which shows that stress is proportional to strain.The wire obeys Hooke’s law upto the point P. So P is called the proportionality limit of the wire.

2) Elastic limit (PE) :
Beyond P upto E, the graph is slightly curved. When the load is removed, the wire will regain its natural length. Upto E, the wire can be deformed elastically.

3) Yielding point(Y) :
Beyond elastic limit, when the load is removed at the point Y, the wire does not regain its natural length completely. It will have a permanent increase in length. In the region EY the wire shows plastic behaviour.

4) Tensile Point(T) :
Beyond the point Y, the strain increases rapidly without any increase in the load. Even if the load is not removed, the strain increases continuously till the wire reaches the point T. The stress corresponding to T is called the tensile strength of the given material.

5) Breaking Point(B) :
Beyond the point T, the wire shows necks at few points along the length of the wire. Consequently, the wire breaks at B. This point B is called ‘breaking point’.

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 9.
Two identical solid balls, one of ivory and the other of wet clay are dropped from the same height onto the floor. Which one will rise to a greater height after striking the floor and why?
Answer:
Ivory is more elastic than wet clay. So ivory ball shall rise to a great height as compared to a clay ball. Infact, the ball of wet clay may not rise at all.

Question 10.
While constructing buildings and bridges a pillar with distributed ends is preferred to a pillar with rounded ends. Why?
Answer:
A pillar with rounded ends supports less load than that with a distributed shape at the ends. Hence pillar with distributed ends is preferred while constructing buildings and bridges.

Question 11.
Explain why the maximum height of a mountain on earth is approximately 10 km?
Answer:
At the base of the mountain, the stress due to all the rocks on top should be less than the critical shear stress at which the rock begins to flow. This can be estimated as follows.

Let hmax be the maximum possible height of the mountain. Let ‘ρ’ be the density of the rock. If ‘A’ be the cross-sectional area of the mountain then stress at the bottom of the mountain = \(\frac{\mathrm{h}_{\max } \mathrm{A} \rho \mathrm{g}}{\mathrm{A}}\) = hmaxρg the material at the bottom of the mountain experiences this force per unit area in the vertical direction.

The elastic limit for a typical rock is 3 × 108Nm-2 and typical density of a rock, ρ = 3 × 10³kgm-3
To avoid the flow of rock hmaxρg < 3 × 108 (or) hmax ≈ 10 km
∴ The maximum height of a mountain on earth is approximately 10 km.

Question 12.
Explain the concept of Elastic potential energy in a stretched wire and hence obtain the expression for it. [AP 15, 18]
Answer:
When a wire is put under a tensile stress, work is done against the inter-atomic forces.

This work is stored in the wire in the form of elastic potential energy.

Expression :
Consider a thin uniform w ire of length l and area of cross section A fixed at one end.

Let ‘F’ be the force acting on the free end of a w ire. Work done to produce a small extension ’de’ is dW = F de
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 12
This work is stored in the wire in the form of elastic potential energy (U).

∴ Elastic potential energy = U = \(\frac{1}{2}\) × Stress × Strain × volume of the wire

Long Answer Questions

Question 1.
Define Hooke’s law of elasticity and describe an experiment to determine the young’s modulus of the material of a wire.
Answer:
Hooke’s law :
Within elastic limit, the stress is directly proportional to strain.
Stress ∝ Strain
(or) Stress = E (Strain)
Where ‘E’ is called modulus of elasticity.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 13

Description :
The apparatus consists of two long straight wiresA and B. They have same length and equal radius suspended side by side from a fixed rigid support.

The wire A(reference wire) carries a millimeter main scale M and a pan to place a weight. The wire B(experimental wire) of uniform cross-section carries a pan in which known weight can be placed.

A vernier scale V is attached to a pointer at the bottom of the experimental wire B and the main scale M is fixed to the reference wire A.

Procedure :
The length(l) and radius(r) of the experimental wire are measured with the help of a meter scale and screw gauge respectively. Both the reference and experimental wires are given an initial small load to keep the wires straight and the vernier reading is noted.

Now the experimental wire is gradually loaded with more weights to bring it under a tensile stress and the vernier reading is noted.

The difference between two vernier readings gives the elongation (∆l)produced in the wire. If M is the mass that produced an elongation (∆l) in the wire then the young’s modulus of the material of the experimental wire is given by
Y = \(\frac{\mathrm{g} l}{\pi \mathrm{r}^2} \times \frac{M}{\Delta l}\)

Substituting the values of \(\frac{M}{\Delta l}\), g, r and / in the above formula, Young’s modulus ot the material of the wire can be calculated.

Exercise Problems

Question 1.
A copper wire of 1 mm diameter is stretched by applying a force of ION. Find the stress in the wire.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 14

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 2.
A Tungsten wire of length 20cm is stretched by 0.1cm. Find the Strain in the wire.
Solution:
Formula : Strain = e/l;
Given l = 20cm, e = 0.1cm
∴ Strain = \(\frac{e}{l}=\frac{0.1}{20}\) = 0.005

Question 3.
If an iron wire is stretched by 1%. What is the strain on the wire?
Solution:
Let initial length of the iron wire = l
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 15

Question 4.
A brass wire of diameter 1 mm and length 2m is stretched by applying a force of 20N. If the increase in length is 0.51 mm, Find i) the stress, ii) the strain and iii) the Young’s modulus of the wire.
Solution:
Given diameter d = 1 mm ⇒ radius r = 0.5mm = 5 × 10-4m;
Length l = 2 m; force F = 20N; ∆l = 0.51 mm = 51 × 10-5m.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 16

Question 5.
A copper wire and an aluminium wire have lengths in. the ratio 3:2, diameters in the ratio 2 : 3 and forces applied in the ratio 4:5. Find the ratio of increase in length of the two wires. (Ycu = 1.1 × 1011 Nm-2, YAl = 0.7 × 1011 Nm-2).
Solution:
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 17

Question 6.
A brass wire of cross-sectional area 2mm² is suspended from a rigid support and a body of volume 100 cm³ is attached to its other end. If the decrease in the length of the wire is 0.11 mm, when the body is completely immersed in water, find the natural length of the wire. (Ybrass = 0.91 × 1011 Nm-2, ρwater = 10³ kg m-3).
Solution:
Given that A = 2 mm² = 2 × 10-6m²; V = 100 cm³ = 10-4 m³.
∆l = 0.11 mm = 11 × 10-5m; Yb = 0.91 × 10 11Nm-2; ρw = 10³ kg m-3.
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 18

Question 7.
There are two wires of same material. Their radii and lengths are both in the ratio 1 : 2. If the extensions produced are equal what is the ratio of loads?
Solution:
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 19

Question 8.
Two wires of different material have same lengths and areas of cross-section. What is the ratio of their increase in length when forces applied are the same?
(Y1 = 0.9 × 1011 Nm-2, Y2 = 3.6 × 1011 Nm-2)
Solution:
Here, L1 = L2 = L; A1 = A2 = A; F1 = F2 =F; Y1 = 0.90 × 1011 Nm-2; Y2 = 3.6 × 1011 Nm-2
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 20

Question 9.
A metal wire of length 2.5m and area of cross section 1.5 × 10-6m² is stretched through 2mm. If its Young’s modulus is 1.25 × 1011m², find the tension in the wire.
Solution:
Given length l = 2.5m; Area A = 1.5 × 10-6m²;
∆l = 2 × 10-3m; Y = 1.25 × 1011Nm-3
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 21

Question 10.
An aluminium wire and a steel wire of the same length and cross-section are joined end-to-end. The composite wire is hung from a rigid support and a load is suspended from the free end ratio of the (i) stress in the wires and (ii) strain in the two wires.
(YAl = 0.7 × 1011Nm-2; Ysteel = 2 × 1011Nm-2)
Solution:
Here l1 = l2 = l; A1 = A2 = A; F1 = F2 = F; Y1 = 0.7 × 1011Nm-2; Y2 = 2 × 1011Nm-2
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 22

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 11.
A 2cm cube of some substance has its upper face displaced by 0.15cm due to a tangential force of 0.3N. while keeping the lower face fixed. Calculate the rigidity modulus of the substance.
Solution:
Given force F = 0.3N; displacement ∆l = 0.15cm = 0.15 × 10-2m;
Length l = 2cm = 2 × 10-2m;
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 23

Question 12.
A spherical ball of volume 1000cm³ is subjected to a pressure of 10 atmosphere. The change in volume is 10-2cm³. If the ball is made of iron, find its bulk modulus.
(1 atmosphere = 1 × 105Nm-2).
Solution:
Given V = 1000cm³ = 10-3 m³; P = 10 atm = 10 × 105Nm-2 = 106Nm-2; ∆V = 10-2 cm³ = 10-8
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 24

Question 13.
A copper cube of side of length 1cm is subjected to a pressure of 100 atmoshere. Find the change in its volume if the bulk modulus of copper is 1.4 × 1011Nm-2.
Solution:
Given that length l = 1m = 1 × 10-2 m ⇒ volume V = l³ = 10-6 m³; P = 100atm = 100 × 105 Nm-2; K = 1.4 × 105 Nm-2
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 25

Question 14.
Determine the pressure required to reduce the given volume of water by 2%. Bulk modulus of water is 2.2 × 109 Nm-2
Solution:
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 26

Question 15.
A steel wire of length 20em is stretched to increase its length by 0.2cm. Find the lateral strain in the wire if the Poisson’s ratio for steel is 0.19.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 27

Multiple Choice Questions

Question 1.
A wire is subjected to a longitudinal strain of 0.05. If its material has a Poisson’s ratio of 0.25, the lateral strain experienced by it is
1) 0.0125
2) 0.125
3) 0.00125
4) 12.5
Answer:
1) 0.0125

Question 2.
The Poisson’s ratio can’t “have the value
1) 0.7
2) 0.2
3) 0.1
4) 0.5
Answer:
1) 0.7

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 3.
For a given material the Young’s modulus is 2.4 times that of rigidity modulus. Its Poisson’s ratio is
1) 2.4
2) 1.2
3) 0.4
4) 0.2
Answer:
4) 0.2

Question 4.
If for material Young’s modulus 6.6 × 1010,N/m² and bulk modulus is 11 × 1010N/m² then the Poisson’s ratio is
1) 0.4
2) 0.6
3) 1
4) infinity
Answer:
1) 0.4

Question 5.
If the ratio of lengths, radii and young’s moduli of steel and brass wires shown in figure are a,b and c respectively, the ratio between the increase in length of brass and steel would be
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 28
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 29
Answer:
4

Question 6.
A metal ring of radius r cross sectional area A is fitted into a wooden circular disc of radius R (R > r). If the young’s modulus of material of the ring is Y, the force with which the metal rinxpands is
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 30
Answer:
2

Question 7.
If the work done in stretching a wire by 1 mm is 2J. The work necessary for stretching another wire of same material with double the radius of cross section and half the length by 1mm is in joule
1) 16
2) 8
3) 1
4) \(\frac{1}{4}\)
Answer:
1) 16

Question 8.
Two wires of same material and same diameter have lengths in the ratio 2:5. They are stretched by same force. The ratio of workdone in stretching them is
1) 5 : 2
2) 2 : 5
3) 1 : 3
4) 3 : 1
Answer:
2) 2 : 5

Question 9.
The length of a metal wire is /, w hen the tension in it is F, and l2 when the tension is F . Then natural length of the wire is
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 31
Answer:
3

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 10.
A cube is subjected to a uniform volume compression. If the side of the cube decreases by 1% then the bulk strain is
1) 0.01
2) 0.06
3) 0.02
4) 0.03
Answer:
4) 0.03

Question 11.
Modulus of elasticity is dimensionally equivalent to
1) stress
2) surface tension
3) strain
4) coefficient ofviscosity
Answer:
1) stress

Question 12.
According to Hooke’s law of elasticity, the ratio of stress to strain
1) remains constant
2) increases
3) decreases
4) zero
Answer:
1) remains constant

Question 13.
A 60 mm cube has bulk modulus 1.25 × 1011 pascal. If the pressure is changed by 2.5 × 107 pascal, the change in volume is
1) -43.2 m³
2) -43.2 mm³
3) -43.2 cm³
4) -41.2 mm³
Answer:
2) -43.2 mm³

Question 14.
The poisson’s ratio ‘σ’ should satisfy the relation
1) -1 < σ < 0.5
2) -0.5 < σ < 0.1
3) 0.5 < σ < 1.0
4) -1.0 < σ < -0.5
Answer:
1) -1 < σ < 0.5

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 15.
Bulk modulus of water 2 × 1011Nm-2. The pressure required to increase the; density of water by 0.1% in Nm-2 is
1) 2 × 109
2) 2 × 108
3) 2 × 106
4) 2 × 104
Answer:
3) 2 × 106

Question 16.
The increase in length of a wire on stretching is 0.025%. If its Poisson ratio is 0.4 then the percentage decrease in the diameter is
1) 0.01
2) 0.02
3) 0.03
4) 0.04
Answer:
1) 0.01

Question 17.
A material has normal density ρ and bulk modulus K. The increase in density of the material when it is subjected to external pressure P from all sides is
AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids 32
Answer:
3

Question 18.
Which of the following affects the elasticity of a substance
1) hammering and annealing
2) change in temperature
3) impurity in substance
4) all of these
Answer:
4) all of these

Question 19.
A spring of force constant 800 N/m has an extension of 5 cm. The work done in extending it from 5cm to 15 cm is
1) 16 J
2) 8 J
3) 32 J
4) 24 J
Answer:
2) 8 J

Question 20.
The breaking stress of wire depends upon
1) length of wire
2) radius of wire
3) material of wire
4) shape of cross section
Answer:
3) material of wire

Question 21.
The bulk modulus of a spherical object is ‘B’ If it is subjected to uniform pressure ‘p’, the fractional decrease in radios is
1) B/3p
2) 3p/B
3) p/3B
4) p/B
Answer:
3) p/3B

Question 22.
The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?
1) length = 200 cm, diameter = 2 mm
2) length = 300 cm, diameter = 3 mm
3) length = 50 cm, diameter = 0.5 mm
4) length = 100 cm, diameter = 1 mm
Answer:
3) length = 50 cm, diameter = 0.5 mm

AP Inter 1st Year Physics Important Questions Chapter 10 Mechanical Properties of Solids

Question 23.
When a block of mass M is suspended by a long wire of length L, the length of the wire becomes (L + l). The elastic potential energy stored in the extended wire is
1) \(\frac{1}{2}\)MgL
2) Mgl
3) MgL
4) \(\frac{1}{2}\)Mgl
Answer:
4) \(\frac{1}{2}\)Mgl

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Students get through AP Inter 1st Year Physics Important Questions 9th Lesson Gravitation which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 9th Lesson Gravitation

Very Short Answer Questions

Question 1.
State the unit and dimension of the universal gravitational constant(G). Units of ‘G’: [Imp.Q]
Answer:
C.GS unit: dyne. cm²/gm²
S.l unit : Nm²/kg²
Dimensional formula: [M-1L³T-2]

Question 2.
State the vector form of Newton’s law of gravitating. [Imp.Q]
Answer:
The vector form of Newton’s law of gravitation is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 1
Where G is the universal gravitational constant, \(\hat{r}\) is the unit vector from m] to m, and r is the distance between the two bodies.

Question 3.
If the gravitational force of the earth on the moon is F, what is the gravitational force of the moon on the earth? Do these forces form an action-reaction pair?
Answer:
The gravitational force of the earth on the moon is F.
The gravitational force of the moon on the earth is -F.
Yes, these forces will form an action-reaction pair.

Question 4.
What would be the change in acceleration due to gravity (g) at the surface, if the radius of Earth decreases by 2% keeping the mass of Earth constant?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 2
∴ As R decreases by 2%, the value of g increases by 4%.

Question 5.
As we go from one planet to another how will (a) the mass (b) the weight of a body change? jlmp.QI
Answer:
(a) The mass of the body remains same
(b) Weight W = mg ⇒ W ∝ g
As ‘g’ changes from planet to planet.
So, weight of the body is proportional to mass of the planet and inversely proportional to square of its radius.
Thus, weight of the body changes from one planet to another planet.

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 6.
Keeping the length of a simple pendulum constant, will the time period be the same on all planets? Support your answer with reason.
Answer:
No.
For a Simple Pendulum, Time period T = πJ\(\sqrt{\frac{l}{g}}\)
If l is kept constant then T ∝ \(\frac{l}{\sqrt{g}}\)
Since, ‘g’ varies from one Planet to another Planet. So time period also varies from one planet to another planet.

Question 7.
Give the equation for the value of g at a depth ‘d’ from the surface of Earth. What is the value of ‘g’ at the centre of Earth?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 3
gd = g(1-\(\frac{d}{R}\))
Where d = depth from the surface of earth.
R = radius of the earth.
At the centre of the earth d = R. Hence, gd = 0.

Question 8.
What are the factors that make ‘g’ the least at the equator and maximum at the poles?
Answer:
The factors that make ‘g’, the least at the equator and maximum at the poles due to

  1. Non sphericity (shape of the earth )
  2. rotation of the earth

Question 9.
“Hydrogen is in abundance around the sun but not around the earth.” Explain.
Answer:
The r.m.s velocity of hydrogen molecules is around 2km/s.
The escape velocity on the surface of earth is 11,2km/s.
But the escape velocity on the surface of sun is 620km/s.
The escape velocity of sun is greater than escape velocity of earth and r.m.s velocity of hydrogen
Also, the gravitational attraction of the sun is more than the earth.
Hence hydrogen is in abundance around the Sun and less around the earth.

Question 10.
What is the time period of revolution of a geostationary satellite? Does it rotate from West to East or from East to West?
Answer:
The time period is equal to 24 hours. It rotates from West to East in an equatorial plane.

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 11.
What are polar satellites?
Answer:
The low altitude (500 to 800km) satellites, which go around the poles of the earth in a north-south direction are known as polar satellites.
The time period of polar satellite is around 100 minutes.

Short Answer Questions

Question 1.
State Kepler’s laws of planetary motion. [Imp. Q; TS 17, 20]
Answer:
1) Law of orbits :
All planets move in elliptical orbits with the sun situated at one of the foci.

2) Law of areas :
The line that joins any planet to the sun sweeps equal areas in equal intervals of time.

3) Law of periods :
The square of the time period of revolution of a planet is proportional to the cube of the semi-major axis of the ellipse traced out by the planet.

Question 2.
Derive the relation between acceleration due to gravity(g) at the surface of a planet and Gravitational constant(G). [AP 19; Imp. Q]
Answer:
Relation between g and G :
Consider a body of mass ‘m’ is placed on the surface of a planet of mass ‘M’ and radius ‘R’. The distance between the centres of the planet and the body is equal to the radius of the planet(R).
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 4
According to Newton’s law of gravitation the gravitational force on the body is
F = \(\frac{GMm}{R^2}\) ………. (1),
Where ‘G’ is universal gravitational constant.
The force acting on the body due to gravitational pull of the planet is F = mg ………. (2)
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 5

Question 3.
How does the acceleration due to gravity(g) change for the same values of height (h) and depth(d)? [Imp.Q]
Answer:
a) At small heights and small depths :
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 6
Decrease in ‘g’ at small heights is more than the decrease in ‘g’ at small depths.

b) At large heights and large depths :

At large heights decrease in ‘g’ is less than the decrease in ‘g’ at large depths.

Question 4.
What is orbital velocity? Obtain an expression tor it. [IPE’ 10, 14; AP 17,18]
Answer:
Orbital Velocity :
The horizontal velocity required for an object to revolve around a planet in a circular orbit is called orbital velocity.

Expression :
Consider an object of mass m revolving around a planet of mass M and radius R. Let ‘h’ be the distance of centre of mass of the object from the surface of the planet.

Let v0 be the horizontal speed of the object when it revolves around the planet in circular orbit. Centripetal force on the object = Gravitational force of attraction of the planet on the object.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 8

Question 5.
What is escape velocity? Obtain an expression for it. [TS 16, 19, 22] [AP 15, 16, 18, 19]
Answer:
Escape Velocity :
The minimum velocity required for an object to escape from the gravitational influence of a planet is known as escape velocity.

Expression :
Consider an object of mass ‘m’ at rest on the surface of a planet of mass M and radius R.
The gravitational potential on the surface of a planet = \(\frac{-GM}{R}\) —– (1)
The gravitational potential energy of the system = gravitational potential x mass of the object = \((\frac{-GM}{R})m\) —– (2)

The object can be made to escape from the gravitational field of the planet by imparting certain minimum speed to the object.

This minimum speed to be imparted to the bound object at rest is escape velocity ve.

The kinetic energy imparted to the object must be equal and opposite to the potential energy of the system so that the total energy is equal to zero.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 9

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 6.
What is a geostationary satellite? State its uses. [TS 18, 22; AP,TS 15, 16, 20, 22]
Answer:
Geostationary satellite :
If the period of revolution of an artificial satellite is equal to the period of rotation of the earth then such a satellite is called geostationary satellite.

Uses :
Geostationary satellites can be used to

  1. Study the upper layers of the atmosphere.
  2. Forecast the changes in the atmosphere.
    3) Know the shape and size of the earth.
  3. Transmit the T.V programmes to distant places.
  4. Identify the minerals and natural resources present inside and on the surface of the earth.

Question 7.
If two places are at the same height from the mean sea level; One is on a mountain and the other in air. At which place ‘g’ will be greater? State the reason for your answer.
Answer:
‘g’ is more on mountain due to the presence of mass of mountain.

Question 8.
The weight of an object is more at the poles than at the equator. At which of these places we can get more sugar for the same weight? State the reason for your answer.
Answer:
Weight W = mg
For same weight at two different places, m ∝ \(\frac{1}{g}\)
But acceleration due to gravity at poles is greater than that at equator.
Hence more sugar is obtained at equator for same weight.

Question 9.
If a nut becomes loose and gets detached from a satellite revolving around the earth, will it fall down to earth or will it revolve around earth? Give reason for your answer.
Answer:
It revolves in the same orbit due to inertia of motion.

Question 10.
An object projected with a velocity greater than or equal to 11.2 kms-1 will not come to the earth. Explain.
Answer:
The escape velocity of the body on the earth is 11.2 kms-1.
If a body is projected with 11.2kms-1 (or) greater than this velocity it will not come back to the earth.

Long Answer Questions

Question 1.
Define gravitational potential energy and derive an expression for it associated with two particles of masses m1 and m2.
Answer:
Gravitational potential energy of a body at a point is defined as the amount of work done in bringing the given body from infinite to that point against the gravitational force.

For two particle system gravitational potential energy U = \(\frac{Gm_1m_2}{r}\)

Expression for Gravitational Potential Energy associated with two particles :
Consider a body of mass m2 is placed at P in the gravitational field of a body of mass m1.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 10

Let ‘r’ be the distance of separation between two particles.
In order to determine the gravitational potential energy of this system of two particles, let us calculate the work done in moving mass m2 from infinity to P. When the mass m2 is at A, the gravitational force of attraction on it due to mass m1 is given by
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 11

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 2.
Derive an expression for the variation of acceleration due to gravity (a) above and (b) below the surface of the Earth. [lmp. Q]
Answer:
(a) Variation of ‘g’ with height :
Consider a body of mass ‘m’ at a height ‘h’ from the surface of the earth of mass ‘M’ and radius ‘R’.

According to Newton’s law of gravitation, the gravitational force of attraction of the earth on
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 12
Thus the acceleration due to gravity decreases with height.

(b) V ariation of g with depth :
Let us assume that the earth to be a homogeneous uniform sphere of radius ‘R’, density ‘ρ’ and mass ‘M’.
Let g be the acceleration due to gravity at a place on the surface of the earth.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 13

Consider a body of mass ‘m’ is at a depth ‘d’ from the surface of the earth as shown in figure. The force on the body will be due to the mass of the earth confined in a sphere of radius (R-d). Let gd be the acceleration due to gravity at depth d.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 14
Thus, the acceleration due to gravity decreases with depth.

Question 3.
State Newton’s Universal law of Gravitation. Explain how the value of the Gravitational constant (G) can be determined by Cavendish method.
Answer:
Universal Law of Gravitation :
“Every body in the universe attracts every other body with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them”. Funiversal = \(\frac{Gm_1m_2}{r^2}\)

Determination of Universal Gravitational constant(G):
The experimental arrangement used by Cavendish to determine the Universal Gravitational constant is shown in figure.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 15

A bar AB is suspended from a rigid support by a fine wire. Two small lead spheres are attached at the ends of bar. When two big lead spheres are brought close to the small spheres on opposite sides then a torque acts on the bar. Due to this torque, the suspended wire gets twisted till the restoring torque of the wire equals to the gravitational torque.

Let θ be the angle of twist of the suspended wire.
The restoring torque = τθ where τ is the restoring couple per unit angle of twist.
If r is the separation between the centres of the big and small spheres then the gravitational force between them is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 16
G can be calculated by Substituting different values in the above equation.

Solved Problems

Question 1.
Find the potential energy of a system of four particles placed at the vertices of a square of side /. Also obtain the potential at the centre of the square.
Answer:
Consider four masses each of mass m at the comers of a square of side l;

We have four mass pairs at distance l and two diagonal pairs at distance √2l
∴ Work done to form the given configuration is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 17

Question 2.
Find the mass of the earth using the following data:
g = 9.81 ms-2, RE = 6.37 × 106 m, the distance to the moon R = 3.84 × 108 m and the time period of the moon’s revolution is 27.3 days.
Answer:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 18

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 3.
A 400kg satellite is in a circular orbit of radius 2RE about the Earth. How much energy is required to transfer it to a circular orbit of radius 4RE? What are the changes in the kinetic and potential energies?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 19

Exercise Problems

Question 1.
Two spherical balls each of mass I kg are placed 1 cm apart. Find the gravitational force of attraction between ‘them.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 20

Question 2.
The mass of a bail is four times the mass of another bail. When these balls are separated by a distance of 10 cm the force of gravitation between them is 6.67 × 10-7 N. Find the masses of the two bails.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 21

Question 3.
Three spherical balls of mass 1kg, 2kg and 3kg are placed at the corners of an equilateral triangle of side lm. Find the magnitude of gravitational force exerted by the 2kg and 3kg masses on the 1kg mass.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 22

Question 4.
At a certain height above the earth’s surface, the acceleration due to gravity is 4% of its value at the surface of earth. Determine the height.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 23

Question 5.
A satellite is orbiting the earth at a height of 1000 km. Find its orbital speed.
Solution:
Given that h = 1000km, R = 6400km. Also, G = 6.67 × 10-11 Nm²/kg², ME = 6 × 1024kg
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 24

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 6.
A satellite orbits the earth at a height equal to the radius of earth. Find it’s
i) orbital speed and
ii) period of revolution.
Solution:
Given that h = R = 6.4 × 106m. Also, G = 6.67 × 10-11 Nm²/kg²; ME = 6 × 1024kg
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 25

Question 7.
The gravitational force of attraction between two objects decreases by 36% when the distance between them is increased by 4m. Find the original distance between them.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 26

Question 8.
Two spherical balls of l kg and 4 kg are separated by a distance of 12 cm. Find the distance of a point from the 1 kg mass at which the gravitational force on any mass becomes zero.
Solution:
Let mj = l kg; m2 = 4 kg and d = 12 cm
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 27

Question 9.
For identical masses of m are kept at the corners of a square of side a. Find the gravitational force exerted on one of the masses by the other masses.
Solution:
We take m1 = m2 = m3 = m4 = m
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 28

Question 10.
Three uniform spheres each of mass m and radius R are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any one of the spheres due to the other two. .
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 29

Question 11.
Two satellites are revolving round the earth at different heights. The ratio of their orbital speeds is 2:1. If one of them is at a height of 100km. What is the height of the other satellite?
Solution:
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 30

Question 12.
A satellite is revolving round in a circular orbit with a speed of 8 kms-1 at a height where the value of acceleration due to gravity is 8 ms-2. How high is the satellite from the Earth’s surface? (Radius of planet = 6000 km)
Solution:
Here V0 = 8 kms-1 = 8000 m/s,
R = 6000km = 6 × 106m,
gh = 8 ms-2.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 31

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 13.
(a) Calculate the escape velocity of a body from the earth’s surface, (b) the earth were made of wood, its mass would be 10% of its current mass. What would be the escape velocity, if the earth were made of wood?
Solution:
We know mass of earth M = 6 × 1024 kg;
g = 9.8 ms-2;
radius R = 6400 km = 6.4 × 106 m
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 32

Multiple Choice Questions

Question 1.
When a body is taken from equator to the poles, its weight
1) Remains the same
2) Increases
3) Decreases
4) Increases at north pole and decreases at south pole.
Answer:
2) Increases

Question 2.
With increase in height and depth, the acceleration due to gravity
1) Increases
2) May increase or decrease
3) Decreases
4) Does not change
Answer:
3) Decreases

Question 3.
The escape velocity on earth is I1.2kms The escape velocity on a planet of mass M/4 and radius R/2 is (M and R are the mass of earth and its radius)
1) 11.2 kms-1
2) 8 kms-1
3) 4 kms-1
4) zero
Answer:
2) 8 kms-1

Question 4.
The orbital period of a geo stationary satellite is
1) 2 hr
2) 6 hr
3) 24 hr
4) 12 hr
Answer:
3) 24 hr

Question 5.
The escape velocity of an object on a planet who radius is 4 times that of the earth and acceleration due to gravity 9 times that on the earth is
1) 67.2 kms-1
2) 37.4 kms-1
3) 111.2 kms-1
4) 25.2 kms-1
Answer:
1) 67.2 kms-1

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 6.
A satellite is revolving near the earth’s surface. Its orbital velocity is
1) 5.8 kms-1
2) 18.4 kms-1
3) 11.4 kms-1
4) 8 kms-1
Answer:
4) 8 kms-1

Question 7.
If A is the areal velocity of a planet of mass ‘M’, its angular momentum is
1) M/A
2) 2MA
3) A²M
4) AM²
Answer:
2) 2MA

Question 8.
The angular velocity of rotation of a star (of mass M and radius R) at which the matter will start escaping from its equator is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 33
Answer:
2

Question 9.
Energy required to move a body of mass ‘M’ from an orbit of radius 2R to 3R is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 34
Answer:
4

Question 10.
The escape velocity on earth is 11.2kms-1. Its value for a planet having double the radius and 8 times mass of the earth is
1) 11.2 kms-1
2) 22.4 kms-1
3) 5.6 kms-1
4) 8 kms-1
Answer:
2) 22.4 kms-1

Question 11.
What will be the formula of mass of the earth in terms of g, R and G?
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 35
Answer:
2

Question 12.
Two spheres of masses m and M are situated in air and the gravitational force between them is F. The space around the masses is now filled with a liquid of specific gravity 3. The gravitational force will now be
1) 3 F
2) F
3) F/3
4) F/9
Answer:
2) F

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 13.
A body of weight 72 N moves from the surface of earth at a height half of the radius of earth, then gravitational force exerfed on it will be
1) 36 N
2) 32 N
3) 144 N
4) 50 N
Answer:
2) 32 N

Question 14.
Gravitational force is required for
1) stirring of liquid
2) convection
3) conduction
4) radiation
Answer:
2) convection

Question 15.
If ve is escape velocity and v0 is orbital velocity of a satellite for orbit close to the earth’s surface, then these are related by
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 36
Answer:
4

Question 16.
For a planet having mass equal to mass of the earth but radius is one fourth of radius of the earth. The escape velocity for this planet will be
1) 11.2 km/s
2) 22.4 km/s
3) 5.6 km/s
4) 44.8 km/s
Answer:
2) 22.4 km/s

Question 17.
The escape velocity of a sphere of mass m is given by (G = Universal gravitational constant; Me = Mass of the earth and Re = Radius of the earth)
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 37
Answer:
2

Question 18.
For a satellite escape velocity is 11 km/s. If the satellite is launched at an angle of 60° with the vertical, then escape velocity will be
1) 11 km/s
2) 11√3 km/s
3) 11/√3 km/s
4) 33 km/s
Answer:
1) 11 km/s

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 19.
The ratio of escape velocity at earth (ve) to the escape velocity at a planet (vp) whose radius and mean density are twice as that of earth is
1) 1 : 4
2) 1 : √2
3) 1: 2
4) 1 : 2√2
Answer:
4) 1 : 2√2

Question 20.
The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. ’Then
1) d = 1 km
2) d = 3/2 km
3) d = 2km
4) d = 1/2 km
Answer:
3) d = 2km

Question 21.
A body weighs 200 N on the surface of the earth. How much will it weigh half way down to the centre of the earth?
1) 100 M
2) 150 N
3) 200 N
4)250 N
Answer:
1) 100 M

Question 22.
The acceleration due to gravity g and mean density of the earth p are related by which of the following relations? (where G is the gravitational constant and R is the radius of the earth.)
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 38
Answer:
1

Question 23.
A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?
1) 48 N
2) 32 N
3) 30 N
4) 24 N
Answer:
2) 32 N

Question 24.
A satellite A of mass m is at a distance of r from the centre of the earth. Another satellite B of mass 2m is at a distance of 2r from the earth’s centre. Their time periods are in the ratio of
1) 1 : 2
2) 1 : 16
3) 1 : 32
4) 1 : √2
Answer:
4) 1 : √2

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 25.
The distance of two planets from the sun are 1013 m and 1012 m respectively. The ratio of time per the planets is
1) √10
2) 10√10
3) 10
4) 1/√10
Answer:
2) 10√10

Question 26.
The period of revolution of planet A around the sun is 8 times that of B. The distance of A from the sun is how many times greater than that of B from the sun?
1) 4
2) 5
3) 2
4) 3
Answer:
1) 4

Question 27.
A planet moving along an elliptical orbit is closest to the sun at a distance r1 and farthest away at a distance of r2. If v1 and v2 are the linear velocities at these points respectively, then the ratio v1/v2 is
1) (r1/r2
2) r2/r1
3) (r2/r1
4) r1/r2.
Answer:
2) r2/r1

Question 28.
The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are KA, KB and KC respectively, is the major perpendicular to AC at the position of the Sun S as shown in the figure. Then
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 39
1) KA < KB < KC
2) KA > KB > KC
3) KB < KA < KC
4) KB > KA > KC
Answer:
2) KA > KB > KC

Question 29.
Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will
1) move towards each other
2) move away from each other
3) will become stationary
4) keep floating at the same distance between them
Answer:
1) move towards each other

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 30.
The work done to raise a mass m from the surface of the earth to a height h, which is equal to the radius of the earth, is
1) 3/2 mgR
2) mgR
3) 2mgR
4) 1/2 mgR
Answer:
4) 1/2 mgR

Question 31.
A particle of mass M is situated at the centre of a spherical shell of same mass and radius a. The magnitude of the gravitational potential at a point situated at a/2 distance from the centre, will be
1) GM/a
2) 2GM/a
3) 3GM/a
4) 4GM/a
Answer:
3) 3GM/a

Question 32.
The additional kinetic energy to be provided to a satellite of mass m revolving around a planet of mass M, to transfer it from a circular orbit of radius
R1, to another of radius R2 (R2 > R1) is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 40
Answer:
4

Question 33.
Which one of the following plots represents the variation of gravitational field on a particle w ith distance r due to a thin spherical shell of radius R? (r is measured from the centre of the spherical shell)
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 41
Answer:
2

Question 34.
The dependence of acceleration due to gravity g on the distance r from the centre of the earth, assumed to be a sphere of radius R and of uniform density is as shown in figures.
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 42
The correct figure is
Answer:
1

AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation

Question 35.
A particle of mass m is thrown upwards from the surface of the earth, with a velocity u. The mass and the radius of the earth are, respectively, M and R. G is gravitational constant and g is acceleration due to gravity on the surface of the earth. The minimum value of u to that the particle does not return back to earth, is
AP Inter 1st Year Physics Important Questions Chapter 9 Gravitation 43
Answer:
2

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Students get through AP Inter 1st Year Physics Important Questions 8th Lesson Oscillations which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 8th Lesson Oscillations

Very Short Answer Questions

Question 1.
Give two examples of periodic motion which are not oscillatory.
Answer:
The revolution of Planets around the Sun is Periodic, but it is not Oscillatory.
Similarly, the revolution of Electrons around the Nucleus is Periodic, but it is not Oscillatory.

Question 2.
The displacement in S.H.M is given by y=Asin(20t+4). What is the displacement when it is increased by 2π/ω? [Imp. Q]
Answer:
Given y = Asin(20t + 4)
\(\frac{2 \pi}{\omega}\)
So when time is increased by one time period, the body will have the same displacement,
i. e., y = A sin (20t+4)

Question 3.
A girl is swinging seated in a swing. What is the effect on the frequency of oscillation if she stands? [Imp.Q]
Answer:
The effective length of the swing decreases due to rise in the position of centre of mass.

Since T ∝ √l, Time period decreases, so frequency increases.

Question 4.
The bob of a simple pendulum is a hollow sphere filled with w ater. How w ill the period of oscillation change, if the water begins to drain out of the hollow sphere?
Answer:
As water begins to drainout from the hollow sphere, the centre of mass of (sphere + water) system goes down. So the effective length of pendulum increases. As T ∝ √l, the time period (T) also increases.

When water is completely drained out the centre of mass comes to its original position (i.e., centre of the sphere). So the pendulum will have its original time period.

Question 5.
The bob of a simple pendulum is made of wood. What will be the effect on the time period if the wooden bob is replaced by an identical bob of aluminum?
Answer:
The time period of a simple pendulum does not depend upon the size, shape or material of the bob as long as its length is kept constant. So if the wooden bob is replaced by identical aluminium bob, there will be no change in its time period

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 6.
Will a pendulum clock gain or lose time when taken to the top of a mountain? [Imp. Q]
Answer:
The time period of a pendulum is T = 2π\(\sqrt{\frac{l}{g}}\)

When a pendulum clock is taken to the top of the mountain, its time period increases, because as we go upwards from the surface of earth the value of g decreases. As time period increases, it will take more time to complete one oscillation, so the pendulum clock loses time. Hence, it will go slow.

Question 7.
A pendulum clock gives correct time at the equator. Will it gain or lose time if it is taken to the poles? If so, why? [Imp. Q]
Answer:
At poles the value of ‘g’ is more.
The relation between time period (T) and g is T = 2π\(\sqrt{\frac{l}{g}}\)

So as ‘g’ increases. T decreases. As time period (T) decreases it will make more oscillations. So the clock gains time.

Question 8.
What fraction of flic total energy is K.E when the displacement is one-half of amplitude of a particle executing S.H.M?
Answer:
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 1
So, K.E is 3/4 of T.E when displacement is half of amplitude.

Question 9.
What happens to the energy of a simple harmonic oscillator if its amplitude is doubled? [Imp .Q]
Answer:
Total energy of a simple harmonic oscillator is
T.E = \(\frac{1}{2}\)mω²A²

where m = mass of the particle; ω = angular velocity; A = amplitude
When amplitude is doubled, the new T.E will be
T.E = \(\frac{1}{2}\)mω² (2A)² ⇒ 4 × mω²A² = 4 × initial T.E
So total energy will be increased to 4 times.

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 10.
Can a simple pendulum lie used in an artificial satellite?
Answer:
Inside an artificial satellite, the effective value of g is zero.
The time period of the simple pendulum is given by T = 2π\(\sqrt{\frac{l}{g}}\)

As g = 0, T = ∞. Thus, inside a satellite, the pendulum does not oscillate. So a simple pendulum cannot be used in an artificial satellite.

Short Answer Questions

Question 1.
Define simple harmonic motion? Give two examples. [Imp.Q]
Answer:
Simple Harmonic Motion :
The ‘to and fro motion’ of a particle along a straight line, about a fixed point is said to be “Simple Harmonic”, when the direction of its acceleration is always towards that fixed point and the magnitude of the acceleration is proportional to its displacement from that fixed point.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 2
Thus, acceleration ∝-displacement
⇒ a ∝ – x
⇒ a = -kx, Here k is the Proportionality constant.
The negative sign indicates that acceleration and displacement are opposite in direction.
Ex : Motion of a loaded spring which is stretched and released, vibrations of the prongs of a tuning fork, the oscillations of a simple pendulum with small displacement

Question 2.
Present graphically the variations of displacement, velocity and acceleration with time for a particle in S.H.M.
Answer:
The graphical presentation of the variations of (a) displacement (b) velocity (c) acceleration with time for a particle in S.H.M is as follows:
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 3

Question 3.
What is phase? Discuss the phase relations between displacement, velocity and acceleration in simple harmonic motion.
Answer:
Phase of a particle at any instant represents its position and direction of motion.
In the equation, y=Asin(ωt + θ), where (ωt + θ) gives the phase of the particle.
At time t = 0, if the particle is at mean position, then θ = 0.
Suppose the displacement of a particle executing S.H.M is given as y = Asinωt
Then its velocity will be equal to
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 4
So there will be a phase difference of π/2 between displacement and velocity.
Again, acceleration will equal to a = \(\frac{dv}{dt}=\frac{d}{dt}\) (aωcos ωt) = -aω² sin ωt = -ω²y

So there will be a phase difference of Jt radians between displacement and acceleration.
(The negative sign indicates that acceleration and displacement are opposite in direction.)
There will be a phase difference of π/2 radians between velocity and acceleration.

Question 4.
Obtain an equation for the frequency of oscillation of spring of force constant k to which a mass m is attached.
Answer:
Consider a block of mass ‘m’ suspended from one end of a spring. The spring is suspended from a fixed point as shown in the figure.
Let the block be pulled down and released

At any instant, ‘y’ be the displacement of the block, from the mean position.
The restoring force (F) acting on the body is directly proportional to the displacement (y) in opposite direction.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 5

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 5.
Derive expressions for the kinetic energy and potential energy of a simple harmonic oscillator.
Answer:
We know the displacement of a particle executing SHM is y = A sin ωt
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 6

Potential Energy :
Potential Energy of a simple harmonic oscillator is equal to the work done against the restoring force in producing the displacement ‘y’.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 7

Question 6.
How does the energy of a simple pendulum vary as it moves from one extreme position to the other during its oscillations?
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 8
Answer:
At the extreme position, velocity of the simple pendulum (i.e., bob) will be zero. So its K.E will also be equal to zero. Its total energy will be in the form of P.E

When the bob comes towards mean position, its velocity gradually increases and becomes maximum at the mean position. So K.E also gradually increases and becomes maximum at the mean position. But its P.E decreases by the same amount so that T.E will be same at every point.

As the bob goes from mean position to another extreme position, its velocity gradually decreases and becomes zero at the extreme position. So K.E becomes zero. At this time P.E of the bob increases but T.E of the bob always remain constant.

Question 7.
Derive the expressions for displacement, velocity and acceleration of a particle executes S.H.M.
Answer:
Consider a particle P moving along the circumference of a circle of radius A in anticlockwise direction, with uniform angular speed ω.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 9

Displacement (y) :
Let the particle be at X when time t = 0.
Let the particle be at P after time t.
. The angular displacement of the particle is θ = ωt.
When the particle moves from X to P, the projection moves from O to N.
The distance of ‘N’ from ‘O’ is called displacement y
from ∆ OPN, sin θ = \(\frac{ON}{OP}=\frac{y}{A}\) ; y = A sinθ;
y = A sin ωt ………. (1)
This is the equation for displacement of a particle in SHM.

Velocity (V) :
The rate of change of displacement is velocity.
Hence, the velocity of the particle executing SHM is given by, v = \(\frac{dy}{dt}\)
From (1), we have y = A sinωt ⇒ v = \(\frac{dy}{dt}=\frac{d}{dt}\)(A sin ωt) = (A cos ωt) ω
Acceleration (a): The rate of change in velocity is called acceleration.
∴ v = A ω cos ωt …………. (2)
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 10

Long Answer Questions

Question 1.
Define simple harmonic motion. Show that the motion of (point) projection of a particle performing uniform circular motion, on any diameter, is simple harmonic. [TS 15, 16, 18, 19; AP 16, 18, 19]
Answer:
Definition :
The ‘to and fro motion’ of a particle along a straight line, about a fixed point is said to be Simple Harmonic motion, when
(i) the acceleration is proportional to its displacement, in opposite direction.
(ii) acceleration is always towards the fixed point.

Proof :
Consider a particle P moving along the circumference of a circle of radius A in anticlockwise direction, with uniform angular velocity ω.
If the particle P completes one revolution then the projection PN makes one oscillation on the diameter.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 11
Hence the motion is S.H.M.
Thus, the motion of N which is the projection of P on the diameter is S.H.M.

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 2.
Show that the motion of a simple pendulum is simple harmonic and hence derive an equation for its time period. What is seconds pendulum? [Imp.Q][TS 18,20,22; AP, TS 15, 16, 17, 18, 19, 20, 22]
Answer:
Consider a simple pendulum of length ‘7’, mass ‘w’ suspended from a rigid support as shown in the figure.

Let the bob is making an angle ‘0’ with the vertical at an instant.
The weight (mg) can be resolved into two perpendicular components.
One component ’mgcosθ’ balances the tension.
The other component ‘mgsinθ’ provides Restoring force.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 12
Restoring force F = -mg sinθ
We know F = nra
∴ ma = -mg sinθ
⇒ a = -g sinθ
When θ is very small, sinθ ≈ θ
∴ a= -g(θ)
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 13
Seconds pendulum : A pendulum with time period 2 seconds is called seconds pendulum.

Question 3.
Derive the equation for the kinetic energy and potential energy of a simple harmonic oscillator and show that the total energy of a particle in simple harmonic motion is constant at any point on its path. [AP 19; Imp.Q]
Answer:
Kinetic Energy :
Consider a particle P moving along the circumference ofa circle of radius A, with uniform angular speed ω, at time t.
We know the displacement of the particle is y =A sin ωt
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 14
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 15

Potential Energy :
Potential Energy of a simple harmonic oscillator is equal to the workdone against the restoring force in producing the displacement ‘y’.
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 16
Thus, the total energy of simple harmonic oscillator is constant and it is independent of time and position.
Also, at mean position T.E = K.E[∵ P.E = 0] and at extreme position T.E = P.E [∵ K.E =0]

Solved Problems

Question 1.
On an average, a human heart is found to beat 75 times in a minute. Calculate its frequency and period. [AP 19; Imp. Q]
Solution:
The beat frequency of heart = 75/(1 min) = 75/(60s) = 1.25 s-1 = 1.25 Hz
The time period T = 1/(1.25 s-1) = 0.8 s.

Question 2.
Which of the following functions of time represent (a) simple harmonic motion and (b) periodic but not simple harmonic? Give the period for each case.
(a) sinωt – cosωt
(b) sin²ωt
Solution:
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 17
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 18
The function is periodic having a period T = π/ω. It also represents a harmonic motion with the point of equilibrium occurring at \(\frac{1}{2}\) instead of zero.

Question 3.
A body oscillates with SHM according to the equation (in SI units) x=5cos|27rt+7i/4| At t=I.5s, calculate the (a) displacement, (b) speed and (c) acceleration of the body.
Solution:
The angular frequency co of the body = 2πs-1 and its time period T = 1s.
At t = 1.5 s = \(\frac{3}{2}\) s
(a) Given displacement
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 19

Question 4.
What is the length of a simple pendulum, which ticks seconds? [AP 15, 16, 18; TS 15, 18]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 20

Exercise Problems

Question 1.
The bob of a pendulum is made of a hollow brass sphere. What happens to the time period of the pendulum, if the bob is filled with water completely? Why?
Solution:
When the hollow brass sphere is completely filled water, then there is no change in the effective length of the pendulum. So there is no change in its time period.

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 2.
Two identical springs of force constant ‘k’ are joined one at the end of the other (in series). Find the effective force constant of the combination.
Solution:
Consider two springs of force constant ‘K’ each are connected in series as shown in the figure. When weight ‘mg’ is attached to the series combination, the restoring force ‘F’=mg in each spring will be the same. Since their force constants are same, the extensions produced in them are also same. Let y be the extension of each spring. Then total extension of the combination is 2y. In the case of a spring, we know that
restoring force = Force constant × displacement (taking only magnitude)
F = Force × constant 2y F
⇒ Force constant = \(\frac{F}{2y}\) ………. (1)
If a single spring of spring constant K is taken and the same weight mg is attached to it, then the restoring force in it is F = mg and extension produced is y. So F = \(\frac{F}{y}\) ………. (2)
comparing (l)and(2), force constant of series combination = \(\frac{K}{2}\)

Question 3.
What are the physical quantities having maximum value at the mean position in SHM?
Solution:
At the mean position, velocity and K.E. are maximum.

Question 4.
A particle executes SHM such that, the maximum velocity during the oscillation is numerically equal to half the maximum acceleration. What is the time period? [TS 15]
Solution:
If A is the amplitude and co is angular velocity of the particle in S.H.M.
then maximum velocity, vmax = Aω
and maximum acceleration, amax = Aω²
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 21

Question 5.
A mass of 2kg attached to a spring of force constant 260 NnH makes 100 oscillations. What is the time taken?
Solution:
Given mass attached to the spring, m = 2kg
Force constant of spring, K = 260 Nm-1
No. of oscillations completed = 100
Time taken to complete 100 oscillations (t) = ?
We know that, time period of a spring pendulum, T = 2π\(\sqrt{\frac{m}{k}}\).
⇒ T = 2π\(\sqrt{\frac{m}{k}}\) = 2 × 3.14 × 0.088 = 0.55 sec
∴ Time taken to complete 100 oscillations t = 100 × 0.55 = 55 sec

Question 6.
A simple pendulum in a stationary lift has time period T. What would be the effect on the time period when the lift (i) moves up with uniform velocity (ii) moves down with uniform velocity (iii) moves up with uniform acceleration a (iv) moves down with uniform acceleration ‘a’ (v) begins to fall freely under gravity?
Solution:
For a simple pendulum, then time period (T) is given by T = 2π\(\sqrt{\frac{l}{g}}\)
1) When the lift moves up with uniform velocity, there is no change in effective acceleration. So there is no change in time period.

2) When the lift moves downwards with uniform velocity, then also there is no change in effective acceleration. So there is no change in time period.

3) When the lift moves upwnwards with uniform acceleration a, then effective acceleration = g + a
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 22

Question 7.
A particle executing SHM has amplitude of 4cm, and its acceleration at a distance of lcm from the mean position is 3cms-2. What is its velocity when it is at a distance of 2cm from its mean position?
Solution:
Given amplitude (A) = 4cm
In S.FI.M., when the distance is x, then acceleration, a = ω²x (only magnitude)
Given a = 3cms-2 and x = 1cm
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 23

Question 8.
A simple harmonic oscillator has a time period of 2s. What will be the change in the phase 0.25 s after leaving the mean position?
Solution:
Given time period, T = 2sec
time interval, t = 0.25 sec
phase change = ?
We know that in a time period T, the change in phase = 2π rad
∴ in a time 0.25 sec, the change in phase = ?
i.e, for 2sec, phase change = 2π rad
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 24

Question 9.
A body describes simple harmonic motion with an amplitude of 5cm and a period of 0.2s. Find the acceleration and velocity of the body when the displacement is (a) 5cm (b) 3cm (c) 0 cm.
Solution:
Given amplitude (A) = 5cm = 5 × 10-2m
and time period (T) = 0.2sec
(a) when the displacement x= 5cm
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 25

Question 10.
The mass and radius of a planet are double that of the earth. Sf the time period of a simple pendulum on the earth is T, find the time period on the planet. [AP 20]
Solution:
Let mass of earth = M and radius of earth = R
So mass of planet = 2M and radius of planet = 2R
Now, acceleration due to gravity on earth, ge = \(\frac{GM}{R^2}\)
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 26

Question 11.
Calculate the change in the length of a simple pendulum of length im, when its period of oscillation changes from 2s to 1.5 s. [TS 18]
Solution:
Let initial length of pendulum, l1 = 1m
Initial time period T1 =2 s
Final time period T2 = 1.5 s
Let final length of pendulum = l2
change in length = l1 – l2 = ?
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 27

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 12.
A freely falling body takes 2 seconds to reach the ground on a planet, when it is dropped from a height of 8m. If the period of a simple pendulum is n seconds on the planet, calculate the length of the pendulum.
Solution:
For a freely falling body, u = 0
time of fall t = 2s
height = distance travelled (h) = 8m
Let acceleration due to gravity on the planet (a) = g
From s = ut + \(\frac{1}{2}\)at² ⇒ 8 = 0 + \(\frac{1}{2}\)g × 4 ⇒ 8 = 2g ⇒ g = 4ms-2
Now, time period of simple pendulum, T = π s
length of pendulum, l =?
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 28

Question 13.
The period of a simple pendulum is found to increase by 50% when the length of the pendulum is increased by 0.6in. Calculate the initial length and the initial period of oscillation at a place where g = 9.8 ms-2.
Solution:
Let initial length = l
final length = (l + 0.6)m
Let initial time period = T
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 29

Question 14.
A clock regulated by a second’s pendulum keeps correct time. During summer the length of the pendulum increases to 1.02 m. How much will the clock gain or lose in one day?
Solution:
Time period of seconds pendulum, T1 = 2 s
Length of seconds pendulum l1 = lm
New length of pendulum in summer, l2 = 1.02 m
∴ New time period of pendulum, T2 =?
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 30
As length increased, time period increased. So it will take less number of oscillations. Hence the clock will go slow, (to complete one oscillation)
Error in time when it completes one oscillation = 2.02 – 2 = 0.02 s
A seconds pendulum makes \(\frac{86,400}{2}\) = 43,200 oscillations in one day.
∴ Error in time when it completes 43,200 oscillations = 43200 × 0.02 = 864 s
∴ The clock will go slow by 864 s per one day.

Question 15.
The time period of a body suspended from a spring is T. What wil! be the new time period if the spring is cut into two equal parts and the mass is suspended (i) from one part (ii) simultaneously from both the parts?
Solution:
Let the spring constant of spring be K and mass attached to the spring be m. Now time period
T = 2π\(\sqrt{\frac{m}{k}}\) ………… (1)
When the spring is cut into two equal pieces, the spring constant of each piece will be 2k. Since the same mass is attached
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 31

Multiple Choice Questions

Question 1.
The shape of l – T graph of simple pendulum is
1) Straightline
2) Parabola
3) Curve
4) Hyperbola
Answer:
2) Parabola

Question 2.
The maximum speed of a body vibrating with SHM with a period of π/4s and amplitude of 7 cm is
1) 488 cms-1
2) 56 cms-1
3) 38.5 cms-1
4) 55 cms-1
Answer:
2) 56 cms-1

Question 3.
Average potential energy in one time period of a simple harmonic oscillator whose amplitude is ‘A’ angular velocity oo and mass M is
1) \(\frac{1}{2}\)mω²A²
2) \(\frac{1}{4}\)mω²A²
3) mω²A²
4) 0
Answer:
2) \(\frac{1}{4}\)mω²A²

Question 4.
The restoring force acting on a particle executing SHM is
1) -ωx
2) mω²x
3) -mωx
4) -mω²x
Answer:
4) -mω²x

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 5.
A simple pendulum hanging freely and at rest is vertical because in that position
1) K.E is zero
2) K.E is minimum
3) P.E is zero
4) P.E is minimum
Answer:
4) P.E is minimum

Question 6.
The length of the simple pendulum executing simple harmonic motion is increased by 21%. The percentage increase in time period of the pendulum of increased length is
1) 11%
2) 21%
3) 42%
4) 10.5%
Answer:
4) 10.5%

Question 7.
Time period of a simple pendulum is 2 sec. If its length is increased by 4 times, then its time period becomes
1) 8 sec
2) 12 sec
3) 16 sec
4) 4 sec
Answer:
4) 4 sec

Question 8.
A body executes simple harmonic motion. The potential energy (P.E), kinetic energy (K.E) and total energy (T.E) are measured as function of displacement ‘x’. Which of the following statement is true
1) K.E is maximum when x = 0
2) T.E is zero when x = 0
3) K.E is maximum when x is maximum
4) P.E is maximum when x = 0
Answer:
1) K.E is maximum when x = 0

Question 9.
If the length of a simple pendulum is increased by 2%, then the time period
1) increases by 1%
2) decreases by 1%
3) increases by 2%
4) decreases by 2%.
Answer:
1) increases by 1%

Question 10.
Average velocity of a particle executing SHM in one complete vibration is
1) zero
2) Aω/2
3) Aω
4) Aω²/2
Answer:
1) zero

Question 11.
A simple harmonic oscillator has an amplitude A and time period T. The time required by it to travel from x = A to x = A/2 is
1) T/6
2) T/4
3) T/3
4) T/2
Answer:
1) T/6

Question 12.
A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is
AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations 32
Answer:
2

Question 13.
The distance covered by a particle undergoing SHM in one time period is (amplitude = A)
1) zero
2) A
3) 2A
4) 4A
Answer:
4) 4A

Question 14.
Two simple harmonic motions of angular frequency 100 and 1000 rad s’1 have the same displacement amplitude. The ratio of their maximum acceleration is
1) 1 : 10³
2) 1 : 104
3) 1 : 10
4) 1 : 10²
Answer:
4) 1 : 10²

Question 15.
If a simple harmonic oscillator has got a displacement of 0.02 m and acceleration equal to 2.0 m/s² at any time, the angular frequency of the oscillator is equal to
1) 10 rad/s
2) 0.1 rad/s
3) 100 rad/s
4) 1 rad/s
Answer:
3) 100 rad/s

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 16.
The total energy of particle performing SHM depends on
1) k, a, m
2) k, a
3) k, a, x
4) k, x
Answer:
2) k, a

Question 17.
In a simple harmonic motion, when the isplacement is one-half the amplitude, what fraction of the total energy is kinetic?
1) 1/2
2) 3/4
3) zero
4) 1/4
Answer:
2) 3/4

Question 18.
The potential energy of a simple harmonic oscillator when the particle is halfway to its end point is
1) 2/3 E
2) 1/8 E
3) 1/4 E
4) 1/2 E
Answer:
3) 1/4 E

Question 19.
Two springs of spring constant k1 and k2 are joined in series. The effective spring constant of the combination is given by
1) \(\sqrt{k_1k_2}\)
2) (k1 + k2)/2
3) k1 + k2
4) k1k2 /(k1 + k2)
Answer:
4) k1k2 /(k1 + k2)

Question 20.
A spring is stretched by 5 cm by a force 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is
1) 0.628 s
2) 0.0628 s
3) 6.28 s
4) 3.14 s
Answer:
1) 0.628 s

Question 21.
The time period of a mass suspended from a spring is T. If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be
1) T/4
2) T
3) T/2
4) 2T
Answer:
3) T/2

Question 22.
The phase difference between displacement and acceleration of a particle in a simple harmonic motion is
1) π rad
2) 3π/2 rad
3) π/2 rad
4) zero
Answer:
1) π rad

Question 23.
A particle executing simple harmonic motion of amplitude 5 cm has maximum speed of 31.4 cm/s. The frequency of its oscillation is
1) 4 Hz
2) 3 Hz
3) 2 Hz
4) 1 Hz
Answer:
4) 1 Hz

Question 24.
A particle executes S.H.M. along x-axis. The force acting on it is given by
1) A cos (kx)
2) Ae-kx
3) Akx
4) -Akx
Answer:
4) -Akx

Question 25.
A particle executes simple harmonic oscillation with an amplitude a. The period of oscillation is T. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is
1) T/8
2) T/12
3) T/2
4) T/4
Answer:
2) T/12

Question 26.
The circular motion of a particle with constant speed is
1) periodic but not simple harmonic
2) simple harmonic but not periodic
3) period and simple harmonic
4) neither periodic nor simple harmonic
Answer:
1) periodic but not simple harmonic

AP Inter 1st Year Physics Important Questions Chapter 8 Oscillations

Question 27.
Two SHM’s with same amplitude and time period, when acting together in perpendicular directions with a phase difference of π/2, give rise to
1) straight motion
2) elliptical motion
3) circular motion
4) none of these.
Answer:
3) circular motion

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Students get through AP Inter 1st Year Physics Important Questions 7th Lesson Systems of Particles and Rotational Motion which are most likely to be asked in the exam.

AP Inter 1st Year Physics Important Questions 7th Lesson Systems of Particles and Rotational Motion

Very Short Answer Questions

Question 1.
Is it necessary that a mass should be present at the centre of mass of any system? [TS 22; IPE’ 14; AP 16]
Answer:
No. It is not necessary for mass to be there at the centre of Mass.
Ex: Ring has centre of mass at its centre, where there is no mass.

Question 2.
What is the difference in the position of a girl carrying a hag in one of her hands and another girl carrying a bag in each of her two hands?
Answer:
In the case of a girl carrying a bag in one of her hands, the centre of mass of her body will be shifted towards the hand in which she is carrying the bag.

In the case of a girl carrying a bag in each of her two hands (mass of each bag same) there will be no change in the position of her centre of mass.

Question 3.
Two rigid bodies have same moment of inertia about their axes of symmetry. Of the two, which body will have greater kinetic energy? [Imp.Q]
Answer:
K.ER = \(\frac{1}{2}\) Iω².
For the same moment of Inertia K.ER or ω²

Question 4.
Why are spokes provided in a bicycle wheel? [Imp.Q; IPE’ 13, 14]
Answer:
The spokes of cycle wheel increase its moment of inertia. The greater the moment of inertia, the greater is the opposition to any change in uniform rotational motion. As a result, the cycle runs smoother and steadier. If the cycle wheels had no spokes, the cycle would be driven in jerks and hence unsafe.

Question 5.
We cannot open or close the door by applying force at hinges. Why? [AP 16; TS 22]
Answer:
Torque = force × lever arm of the force
When the force is applied at hinges, lever arm of the force will be zero. So there will be no torque and hence we cannot open or close the door.

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 6.
Why do we prefer a spanner of longer arm as compared to the spanner of shorter arm?
Answer:
Torque = force × lever ami of the force
When we use a spanner of longer arm, lever ami of the force will be large. So the torque produced will also be more. So the body can be rotated easily. Hence we prefer a spanner of longer arm to spanner of shorter ami.

Question 7.
By spinning eggs on a table top, how will you distinguish a hard boiled egg from a raw egg? [Imp.Q; TS 22]
Answer:
A boiled egg is nearly a rigid body and has low moment of inertia. Hence for the same torque boiled egg spins faster. In case of a raw egg, the liquid matter would tend to move away from the rotational axis under the influence of centrifugal force. This would increase the moment of inertia and consequently, the angular velocity gets decreased.

Question 8.
Why Should a helicopter necessarily have two propellers? [Imp.Q]
Answer:
If there were only one propeller, then according to law of conservation of angular momentum, the helicopter would rotate itself in the opposite direction. So a helicopter necessarily have two propellers.

Question 9.
If the polar ice caps of the earth were to melt, what would the effect of the length of the day be?
Answer:
If the polar ice melts, the water formed will spread over the surface of the earth. As a result, the moment of inertia of earth will increase. Since angular momentum (=1ω) of earth remains constant, co will decrease. This means the earth will complete one revolution about its own axis in a longer time instead of 24 hours. Hence the length of the day will increase.

Question 10.
Why is it easier to balance a bicycle in motion? [Imp.Q]
Answer:
The rotating wheels of a bicycle possess angular momentum. In the absence of an external torque, neither the magnitude nor the direction of angular momentum change. The direction of angular momentum is along the axis of the wheel. So the bicycle does not get titled.

Short Answer Questions

Question 1.
Distinguish between centre of mass and centre of gravity. [AP,TS 15, 16, 17, 18, 22]
Answer:

Centre of mass Centre of gravity
1) This is the point at which entire mass of the body is supposed to be concentrated. 1) This is the point at which the weight of the body acts.
2) Centre of mass is independent of acceleration due to gravity. 2) Centre of gravity depends upon acceleration due to gravity.
3) It may (or) may not lie inside the body. 3) It always lie inside the body.
4) This concept is useful while dealing with motion of body 4) This concept is useful while dealing with stability of body.

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 2.
Show that a system of particles moving under the influence of an external force, moves as if the force is applied at its centre of mass. [AP 18]
Answer:
If ‘n’ particles of masses m1, m2 ………… mn are moving with accelerations a1, a2 ………. an then the acceleration of center of mass is given by
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 1

Hence, Macm = Fext where Fcxt represents the sum of all external forces acting on the particle of the system. The above equation shows that the centre of mass of a system of particles moves as if all the mass of the system was concentrated at the centre of mass and all the external forces were applied at that point.

Question 3.
Explain about the centre of mass of Earth-moon system and its rotation around the sun.
Answer:
The earth-moon system rotates about the common centre of mass. The mass of the earth is about 81 times that of the moon.

The distance between the centres of the earth and the moon is 3.81 × 105 km. The centre of mass of the earth-moon system locate relatively very nearer to the centre of the earth. The interaction of the earth and moon does not affect the motion of the centre of mass of the earth-moon system. The gravitational attraction of the sun is the only external force that acts on the earth-moon system and the centre of mass of the earth-moon system moves in an elliptical path around the sun.

Question 4.
Define vector product. Explain the properties of a vector product with two examples. [AP, TS 15, 16, 17, 18, 19; AP 20,22]
Answer:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 2

Question 5.
Define angular velocity(ω). Derive v = rω. [TS 19, 22; IPE’ 14; AP 16, 17]
Answer:
Angular velocity(ω):
The rate of change of angular displacement is called angular velocity (ω). If a particle undergoes an angular displacement dθ in the time interval dt,
then its angular velocity, ω = \(\frac{d\theta}{dt}\)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 3
Derivation of the relation v = rω
Let us consider a particle moving along a circular path of radius
r with linear velocity v and and angular velocity to ω.
The arc p1p2 of length s subtends an angle θ at the centre then s = rθ
Differentiating w.r.to ‘f, we get
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 4

Question 6.
Define angular acceleration ami torque. Establish the relation between angular acceleration and torque. [AP 19, 19; TS 18, 20; AP, TS 15]
Answer:
Angular acceleration :
Rate of change of angular velocity is called angular acceleration. If the angular velocity of a body changes by dω in time dt, then its angular acceleration
α = \(\frac{d\omega}{dt}\)

Torque :
The turning effect or moment of force about an axis of rotation is called the torque. If a force \(\overline{\mathrm{F}}\) is applied on a particle whose position vector is \(\overline{\mathrm{r}}\) w.r.to origin, then torque
\(\bar{\tau}=\overline{\mathrm{r}} \times \overline{\mathrm{F}}\)

Relation between torque(τ) and angular acceleration(α):
Let us consider a rigid body of moment of inertia I rotating about a fixed axis AB through its centre of mass, O as shown in the figure, under the effect of an external torque.

Let m1, m2, m3 …. = masses of various particles constituting the body.
r1, r2, r3 …… = perpendicular distances of these particles from the axis of rotation.
a1, a2, a3, …….. = linear accelerations of these particles
α = uniform angular acceleration of the body about the given axis of rotation.
(α is same for all the particles of the body)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 5
We know that a1= r1α, a2 = r2α, a3 = r3α…….
Force acting on particle of mass m1 = m1a1 = m1a1α
Torque acting on particle of mass m1 about the given axis of rotation = m1r1α(r1) = m1r1²α
Similarly, torques acting on particles of masses
m2, m3, ……… are m2r2²α, m3r3²α, ………..
Sum of all the torques about the fixed axis is
τ = (m1r1² + m2r2² + m3r3² +….)α
τ = (∑mr2 )α . Here, ∑ = mr² =I, moment of inertia of the body.
⇒ τ = Iα

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 7.
Write the equations of motion for a particle rotating about a fixed axis. [AP 19]
Answer:
When a body is rotating with constant angular acceleration (a), the rotational kinematical equations are
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 6

Question 8.
Derive expressions for final velocity and total energy of a body rolling without slipping.
Answer:
Rolling motion can be treated as the combination of translatory and rotational motion. Therefore K.E of rolling body is the sum of K.E of translation and K.E of rotation.
K.E of rolling body = K.ET + K.ER
But translational K.E of rolling body K.ET = \(\frac{1}{2}\)mv²cm
Where M= Mass of the body, vcm = Velocity of centre of mass
K.E of rotation of the rolling body K.ER = \(\frac{1}{2}\) Iω²
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 7
It varies from body to body and axis to axis
∴ Total kinetic energy of a rolling body K.ETotal = \(\frac{1}{2}\)Mv²cm (1 + β)

Final velocity of rolling body without slipping :
Let the final velocity of rolling body on reaching to the bottom of the inclined plane is v. Then according to Law of conservation of energy (RE) = (K.E)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 8

Long Answer Questions

Question 1.
(a) State and prove parallel axes theorem. [lmp.Q]
(b) For a thin flat circular disk, the radius of gyration about a diameter as axis is K. If the disk is cut along a diameter AB as shown in to two equal places, then find the radius of gyration of each piece about AB.
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 9
Answer:
Parallel axes theorem The moment ofinertia(I) of a rigid body about an axis passing through a point is equal to the sum of
a) Its moment of inertia about a parallel axis passing through its centre of mass IG
b) The product of mass of the body and square of the perpendicular distance between the axes
(Mx²). Thus I = IG + Mx²

Proof :
Consider a plane lamina of mass ‘M’ having its centre of mass at ‘G’. Consider an axis AB passing through the point ‘O’ about which the moment of inertia of the body is to be found. Consider a particle of mass ‘nr at a distance r from the axis AB. Consider another axis CD passing through G and parallel to AB, so that the distance between the two parallel axes is ‘x’. Moment of Inertia of a body about the axis AB is I = ∑mr² —— (1)

Moment of Inertia of the lamina about the axis passing through the center of mass ‘G’ is IG
IG = ∑mb² —— (2)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 10
From ∆ OPE , OP² = OE² + EP² = (OG + GE)² + EP²
= OG² + GE² + 2.OG.GE + EP²
But from ∆ GPE, GE² + EP² = GP²
∴ OP² =OG² +GP² +2.0G.GE
⇒ r² = x² + b² + 2.xa
Now, I = X m r² = X m (x² + b² + 2xa)
I = ∑ mx² + ∑ mb² + ∑m(2xa) = Mx² + IG+ 2∑m(xa)
But, algebraic sum of the moments about centre of mass (∑mx).a = 0
∴ I = IG + Mx²

Problem :
Let M be the mass of flat circular disc andR be its radius. Then moment of inertia of circular disc about diameter AB is I = \(\frac{1}{2}\) MR² ………… (1)
If K is radius of gyration of circular disc, then its moment of inertia is I = MK² ………… (2)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 11
Hence radius of gyration of each piece about AB is K.

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 2.
(a) State and prove perpendicular axes theorem [Imp.Q]
(b) If a thin circular ring and a thin flat circular disk of same mass have same moment of inertia about their respective diameters as axes, then find the ratio of their radii.
Answer:
Perpendicular axes theoren :
‘The moment of inertia of a Rigid body’ about ‘an axis perpendicular to its plane and passing through a certain point’, is equal to ‘the sum of its moments of inertia about any two axes’ in that plane ,which are mutually perpendicular and passing through that point.
Thus IZ = IX + IY
Proof Consider a plane lamina of mass ‘M’.
It is divided into no.of small particles, each of mass ‘m’.
Let a particle P of mass ‘m’ with coordinates (x, y) be at a distance r from the axis OZ.
Moment of inertia of the plane lamina about the Z-axis is IZ = ∑mr²
Moment of inertia of the plane lamina about the X-axis is, IX = ∑my²
Moment of inertia of the plane lamina about the Y-axis is, IY = ∑mx²
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 12
But r² = x² + y²
∴ IZ = ∑mr² = ∑m(x² +y²) = ∑mx² + ∑my²
⇒ IZ = IX + IY
Thus, Perpendicular axes theorem is proved.

Problem:
Let R1 and R2 be the radii of circular ring and circular disc respectively.
Let M be the mass of each one.
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 13

Question 3.
State and prove the principle of conservation of angular momentum. [AP 16]
Explain the principle of conservation of angular momentum with examples.
Answer:
Statement :
The angular momentum of a system always remains constant, when no external torque acts on the system. Thus, L = I ω = constant

Proof :
The relation between resultant external torque τ and angular momentum L is τ = \(\frac{dL}{dt}\). If the resultant external torque τ = 0,then \(\frac{dL}{dt}\) = 0 ⇒ L = constant. (Since, derivative of constant is 0).
Iω = constant; I ∝ \(\frac{1}{\omega}\)

Ex-1:
A diver jumping from the spring board exhibits summersaults in air before touching the water surface. After leaving the spring board he folds his hands and legs inwards. Due to this, his angular velocity increases (Since, the moment of inertia decreases). Hence, the total angular momentum remains constant.

Ex-2:
Pallet dancers increase (or) decrease their angular velocity by folding their arms and sketching legs close to their bodies.Thus, the total angular momentum remains constant.

Solved Problems

Question 1.
Find the centre of mass of three particles at the vertices of an equilateral triangle. The masses of the particles are 100g, 150g and 200g respectively. Each side of the equilateral triangle is 0.5m long. [AP 18; TS 15, 18]
Solution:
With the x-and y-axes chosen as shown in the figure, the coordinates of points O, A and B forming the equilateral triangle are respectively (0,0), (0.5,0), (0.25, 0.25 √3 ). Let the masses 100g, 150g and 200g be located at O, A and B be respectively.
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 14

Question 2.
Find the centre of mass of a triangular lamina.
Solution:
The lamina (∆LMN) may be subdivided into narrow strips each parallel to the base (MN).
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 15

By symmetry, each strip has its centre of mass at its midpoint. If we join the midpoint of all the strips we get the median LP.

The center of mass of the triangle as a whole therefore, has to lie on the median LP. Similarly, we can argue that it lies on the median MQ and NR. This means the centre of mass lies on the point of concurrence of the medians, i.e., on the centroid G of the triangle.

Question 3.
Find the scalar and vector product of two vector, \(\overline{\mathrm{a}}=(3\overline{\mathrm{i}}-4\overline{\mathrm{j}}+5\overline{\mathrm{k}})\) and \(\overline{\mathrm{b}}=(-2\overline{\mathrm{i}}+\overline{\mathrm{j}}-3\overline{\mathrm{k}})\) [TS 20]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 16

Question 4.
Find the torque of a force \(7\overline{\mathrm{i}}+3\overline{\mathrm{j}}-5\overline{\mathrm{k}}\) about the origin. The force acts on a particle whose position vector is \(\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}}\) [Imp.Q; IPE’ 13, 13, 14; TS 19]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 17

Question 5.
What is the moment of inertia of a disc about one of its diameters? [Imp.Q]
Solution:
We know the moment of inertia of the disc about an axis perpendicular to it and through its centre is MR²/2, where M is the mass of the disc and R is its radius.

The disc can be considered to be a planar body.
By the theorem of perpendicular axes Iz = Ix + Iy

By symmetry, the moment of inertia of the disc is the same about any diameter.
i.e., along x-axis and y-axis.
Thus Ix = Iy and Iz = 2Ix
But Iz = MR²/2
So finally, Ix = Iz/ 2 = MR²/ 4
Thus the moment of inertia of a disc about any one of its diameters is MR²/4.

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 6.
What is the moment of inertia of a rod of mass M, length I about an axis perpendicular to it and passing through one end? [TS 19]
Solution:
For the rod of mass M and length /, the M.l of the rod about an axis passing through its centre of mass and perpendicular its plane is I = Ml²/12.
Using the parallel axes theorem, I’ = I + Ma².
With a = l/2 we get, I’ = M\(\frac{l^2}{12}+M(\frac{l}{2})^2=\frac{Ml^2}{3}\)

Question 7.
What is the moment of inertia of a ring about a tangent to the circle of the ring?
Solution:
The tangent to the ring in the plane of the ring is parallel to one of the diameters of the ring. The distance between these two parallel axes is R, the radius of the ring.
Using the parallel axes theorem.
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 18

Exercise Problems

Question 1.
Show that \(\overline{\mathrm{a}}.(\overline{\mathrm{b}}\times\overline{\mathrm{c}})\) is equal in magnitude to the volume of the parallelopiped formed on the three vectors \(\overline{\mathrm{a}},\overline{\mathrm{b}},\overline{\mathrm{c}}\).
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 19

Question 2.
A rope of negligible mass is wound round a hollow cylinder of mass 3kg and radius 40cm. VVhat is the angular acceleration of the cylinder if the rope is pulled with a force of 30N? VVhat is the linear acceleration of the rope? Assume that there is no slipping.
Solution:
Mass of the hollow cylinder, M = 3kg
Radius of the hollow cylinder, R = 40 cm = \(\frac{40}{100}\) = 0.4 m
Force applied on the cylinder, F = 30N
Moment of inertia of hollow cylinder, I = MR² = 3 × (0.4) = 3 × 0.16 = 0.48 kgm²
Torque acting on the cylinder, τ = Fr = 30 × 0.4 = 12 Nm
If α is the angular acceleration produced in the cylinder, then from τ = Iα,
α = \(\frac{\tau}{\mathrm{I}}=\frac{12}{0.48}=\frac{1200}{48}\) = 25 rad /sec².
If a is the linear acceleration of the rope, then a = rα ⇒ a = 0.4 × 25 = 10ms-2.

Question 3.
A coin is kept a distance of 10cm from the centre of a circular turn table. If the coefficient of static friction between the table and the coin is 0.8, find the frequency of rotation of the disc at which the coin will just begin to slip.
Solution:
The frictional force between coin and turn table provides the necessary centripetal force. The coin will not slip as long as the centripetal force is less than or equal to maximum static friction force i.e., centripetal force ≤ fms
∴ The coin will slip when centripetal force = fms
⇒ mrw² = µsmg
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 20

Question 4.
Particles of masses 1g, 2g, 3g, ……… 100g are kept at the marks 1cm, 2cm, 3cm ………. 100cm respectively on a meter scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the meter scale.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 21
49gm particle is at a distance of 1 cm from axis of rotation.
So its moment of inertia is I1 = mr² = 49 (1)² gmcm²

51 gm particle is at a distance of 1cm from axis of rotation.
So its moment of inertia is I2 = 51 (1)² gmcm²

48 gm particle is at a distance of 2cm from axis of rotation.
So its moment of inertia is 4I3 = 48(2)² gmcm².

52 gm particle is at a distance of 2cm from axis of rotation.
So its moment of inertia is I4 = 52(2)² gmcm².
Similarly lgm particle is at a distance of 49cm from axis of rotation.
So its moment of inertia is (1) (49)2 gmcm2.

99 gm particle is at a distance of 49cm from axis of rotation.
So its moment of inertia is (99)(49)² gmcm²

100gm particle is at a distance of 50cm from axis of rotation.
So its moment of inertia is (100)(50)² gmcm²

Hence the total moment of inertia of the system about perpendicular bisector is
49(1)² + 51 (1)² + 48(2)² + 52(2)² + 47(3)² + 53(3)² + …… +(1)(49)² + 99(49)² + 100(50)².
⇒ (1)² [49 + 51] + 2²[48 + 52] + (3)²[47 + 53] + ….. + (49)²[1 + 99] + 100(50)²
⇒ (1)²[ 100] + 2²[100] + (3)²[ 100] + ….. + (49)²( 100) + (50)²( 100)
⇒ 100[1² + 2² + 3² + 4² +….+49² + 50²]
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 22

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 5.
Three particles each of mass 100g are placed at the vertices of an equilateral triangle of side length 10cm. Find the moment of inertia of the system about an axis passing through the centroid of the triangle and perpendicular to its plane.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 23
If the side of an equilateral triangle is a, then
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 24

Question 6.
Four particles each of mass 100g are placed at the corners of a square of side 10cm. Find the moment of inertia of the system about and axis passing through the centre of the square and perpendicular to its plane. Find also the radius of gyration of the system.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 25

Question 7.
Two uniform circular discs, each of mass 1kg and radius 20cm, are kept in contact about the tangent passing through the point of contact. Find the moment of inertia of the system about the tangent passing through the point of contact.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 26

Question 8.
Four spheres each diameter 2a and mass ‘m’ are placed with their centres on the four corners of a square of the side b. Calculate the moment of inertia of the system about any side of the square. D
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 27
Diameter of each sphere = 2a
∴ Radius of each sphere = a
Mass of each sphere = m
Consider the side AB as axis of rotation.
∴ For the spheres kept at A and B axis of rotation is their diameter.
We know that for a sphere, M.I. about a diameter is equal to \(\frac{2}{5}\) ma²
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 28

Question 9.
To maintain a rotor at a uniform angular speed or 200rad s-1, an engine needs to transmit a torque of 180Nm. What is the power required by the engine? (Note: uniform angular velocity in the absence of friction implies zero torque. In practice, applied torque is needed to counter frictional torque). Assume that the engine is 100% efficient.
Solution:
Given uniform angular speed (ω) = 200 rad s-1
Torque (τ) = 180 Nm
Power required by the engine, P = ?
We have P = τω = 180 × 200 = 36000 W = 36 kW

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 10.
A meter stick is balanced on a knife edge at its centre. When two coins, each of mass 5g are put one on top of the other at the 12.0 cm mark, the stick is found to be balanced at 45.0 cm. What is the mass of the meter stick?
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 29
AB is the meter stick and C is its centre of gravity, from which its weight ‘w’ acts vertically downwards.
When two coins each of mass 5gm are placed at 12cm mark, the stick is balanced at C'(=45cm)
∴ Moment of w in clockwise = moment of 10gm in anticlockwise
Force × distance = Force × distance
⇒ w × (50 – 45) = 10 × g × (45 – 12)
⇒ (m × g)5 = 10 × g × 33 ⇒ m × 5 = 10 × 33 ⇒ m= 66 gm

Question 11.
Determine the kinetic energy of a circular disc rotating with a speed of 60rpm about an axis pafsing through a point on its circumference and perpendicular to its plane. The circular disc has a mass of 5kg and radius lm.
Solution:
M.I of a circular disc of mass M and radius R about an axis passing through its centre and perpendicular to its plane is Icm = \(\frac{MR^2}{2}\)
Now, from parallel axis theorem, M.I of the circular disc about a parallel axis at a distance R is
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 30

Question 12.
Two particles, each of mass m and speed u, travel in opposite directions along parallel lines separated by a distance d. Show that the vector angular momentum of the two particles system is the same whatever be the point about which the angular momentum is taken.
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 31

Question 13.
The moment of inertia of a fly wheel making 300 revolutions per minute is 0.3 kgm². Find the torque required to bring it to rest in 20s. [AP 20]
Solution:
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 32

Question 14.
When 100J of work is done on a fly w heel, its angular velocity is increased from 60rpm to 180rpm. What is the moment of inertia of the wheel? [TS 16]
Solution:
Given W = 100J
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 33

Multiple Choice Questions

Question 1.
The centre of mass of two particles with masses 4kg and 2kg located at (1,0,1), (2,2,0) respectively has the coordinates
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 34
Answer:
4

Question 2.
The velocities of three particles of masses 20g, 30g and 50g are \(10\overrightarrow{i},10\overrightarrow{j}and10\overrightarrow{k}\) respectively. The velocity of the centre of mass of the three particles is
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 35
Answer:
1

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 3.
If I is the moment of inertia of a body and ω is its angular velocity, then the rotational kinetic energy is
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 36
Answer:
4

Question 4.
The moment of inertia of a thin circular disc of mass M and radius R about any diameter is
1) MR²
2) MR²/4
3) MR²/2
4) 2MR²
Answer:
2

Question 5.
Moment of inertia of a solid sphere along the direction of tangent is
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 37
Answer:
4

Question 6.
A fan is making 600 rpm. If it makes 1200 rpm, the increase in its angular velocity is
1) 10π rad s-1
2) 20π rad s-1
3) 60π rad s-1
4) 40π rad s-1
Answer:
2) 20π rad s-1

Question 7.
One solid sphere A and another hallow sphere B are of same mass and same outer radii. Their moment of inertia about their diameters are respectively I v and IR such that
1) IA = IB
2) IA > IB
3) IA < IB
4) \(\frac{I_A}{I_B}=\frac{d_A}{d_B}\)
Answer:
3) IA < IB

Question 8.
Find the torque of a force \(\overrightarrow{F}=-3\hat{i}+\hat{j}+5\hat{k}\) acting at the point \(\overrightarrow{r}=7\hat{i}+3\hat{j}+\hat{k}\)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 38
Answer:
3

Question 9.
What is the torque of the force \(\overrightarrow{F}=2\hat{i}-3\hat{j}+4\hat{k}\) N acting at the point \(\overrightarrow{r}=3\hat{i}+2\hat{j}+3\hat{k}\) m about origin?
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 39
Answer:
4

Question 10.
The moment of the force, \(\overrightarrow{F}=4\hat{i}+5\hat{j}-6\hat{k}\) at (2, 0, -3), about the point (2, -2, -2), is given by
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 40
Answer:
4

Question 11.
Find the torque about the origin when a force of 3\(\hat{j}\)N acts on a particle whose position vector is 2km
1) 6\(\hat{i}\) Nm
2) 6\(\hat{j}\) Nm
3) -6\(\hat{i}\) Nm
4) 6\(\hat{k}\) Nm
Answer:
3) -6\(\hat{i}\) Nm

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 12.
What is the value of linear velocity, if
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 41 a
Answer:
2

Question 13.
\(\vec{A}and\vec{B}\) are two vectors and θ is the angie between them, if \(|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A}, \vec{B})\), the value of θ is
1) 45°
2) 30°
3) 90°
4) 60°
Answer:
4

Question 14.
If \(|\vec{A} \times \vec{B}|=\sqrt{3}\vec{A}, \vec{B}\) then the value of . \(|\vec{A} + \vec{B}|\)
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 42
Answer:
1

Question 15.
The resultant of \(\vec{A} \times \vec{0}\) will be equal to
1) zero
2) A
3) zero vector
4) unit vector.
Answer:
3

Question 16.
Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle is nearly at a distance of
1) 33 cm
2) 50 cm
3) 67 cm
4) 80 cm
Answer:
3) 67 cm

Question 17.
Three masses are placed on the x-axis : 300 g at origin, 500 g at x = 40 cm and 400 g at x = 70 cm. The distance of the centre of mass from the origin is
1) 40 cm
2) 45 cm
3) 50 cm
4) 30 cm
Answer:
1) 40 cm

Question 18.
Two particles which are initially at rest, move towards each other under the action of their internal attraction. If their speeds are v and 2v at any instant, then the speed of centre of mass of the system w ill be
1) 2v
2) zero
3) 1.5v
4) v
Answer:
2) zero

Question 19.
Two bodies of mass 1 kg and 3 kg have position vectors \(\hat{i}+2\hat{j}+\hat{k}and-3\hat{i}-2\hat{j}+\hat{k}\) respectively. The centre of mass of this system has a position vector
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 43
Answer:
1

Question 20.
The ceptre of mass of system of particles does not depend on
1) position of the particles
2) relative distances between the particles
3) masses of the particles
4) forces acting on the particle.
Answer:
4) forces acting on the particle.

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 21.
The moment of inertia of a disc of mass M and radius R about an axis, which is tangential to the circumference of the disc and parallel to its diameter is
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 44
Answer:
1

Question 22.
The moment of inertia of a uniform circular disc is maximum about an axis perpendicular to the disc and passing through
AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion 45
1) B
2) C
3) D
4) A
Answer:
1) B

Question 23.
A disc of radius 2 m and mass 100 kg rolls on a horizontal floor. Its centre of mass has speed of 20 cm/s. How much work is needed to stop it?
1) 1 J
2) 3 J
3) 30 kJ
4) 2 J
Answer:
2) 3 J

Question 24.
From a circular disc of radius R and mass 9M, a small disc of mass M and radius R/3 is removed concentrically. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through its centre is
1) \(\frac{40}{9}\)MR²
2) MR²
3) 4MR²
4) \(\frac{4}{9}\)MR²
Answer:
1) \(\frac{40}{9}\)MR²

Question 25.
A disc is rotating with angular speed to. If a child sits on it, what is conserved?
1) linear momentum.
2) angular momentum.
3) kinetic energy.
4) potential energy
Answer:
2) angular momentum.

Question 26.
The ratio of the radii of gyration of a circular disc to that of a circular ring, each of same mass and radius, around their respective axes is
1) √2 : 1
2) √2 : √3
3) √3 : √2
4) 1 : √2
Answer:
4) 1 : √2

Question 27.
A ring of mass m and radius r rotates about an axis passing through its centre 1 and perpendicular to its plane with i angular velocity co. its kinetic energy is
1) \(\frac{1}{2}\) mr²ω²
2) mrω²
3) mr²ω²
4) \(\frac{1}{2}\) mrω²
Answer:
1) \(\frac{1}{2}\) mr²ω²

Question 28.
A wheel has angular acceleration of 3.0 rad/sec2 and an initial angular speed of 2.00 rad/sec. In a time of 2 sec it has rotated through an angle (in radians) of
1) 10
2) 12
3) 4
4) 6
Answer:
1) 10

Question 29.
Two bodies have their moments of inertia I and 2I respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular velocity will be in the ratio
1) 2 : 1
2) 1 : 2
3) √2 : 1
4) 1 : √2
Answer:
3) √2 : 1

Question 30.
A fly wheel rotating about fixed axis has a kinetic energy of 360 joule when its angular speed is 30 radian/sec. The moment of inertia of the wheel about the axis of rotation is
1) 0.6 kg m²
2) 0.15 kg m²
3) 0.8 kg m²
4) 0.75 kg m²
Answer:
3) 0.8 kg m²

Question 31.
A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?
1) 0.25 rad s-2
2) 25 rad s-2
3) 5 m s-2
4) 25 m s-2
Answer:
2) 25 rad s-2

AP Inter 1st Year Physics Important Questions Chapter 7 Systems of Particles and Rotational Motion

Question 32.
A couple produces
1) linear and rotational motion
2) no motion
3) purely linear motion
4) purely rotational motion
Answer:
4) purely rotational motion