Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(h) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(h)

Solve the following systems of equations.
(i) by using Cramer’s rule and matrix inversion method, when the coefficient matrix is non-singular.
(ii) by using the Gauss-Jordan method. Also, determine whether the system has a unique solution or an infinite number of solutions, or no solution, and find the solutions if exist.

Question 1.
5x – 6y + 4z = 15
7x + 4y – 3z = 19
2x + y + 6z = 46
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
5 & -6 & 4 \\
7 & 4 & -3 \\
2 & 1 & 6
\end{array}\right|\)
= 5(24 + 3) + 6(42 + 6) + 4(7 – 8)
= 135 + 288 – 4
= 419
Δ1 = \(\left|\begin{array}{ccc}
15 & -6 & 4 \\
19 & 4 & -3 \\
46 & 1 & 6
\end{array}\right|\)
= 15(24 + 3) + 6(114 + 138) + 4(19 – 184)
= 405 + 1512 – 660
= 1917 – 660
= 1257
Δ2 = \(\left|\begin{array}{ccc}
5 & 15 & 4 \\
7 & 19 & -3 \\
2 & 46 & 6
\end{array}\right|\)
= 5(114 + 138) – 15(42 + 6) + 4(322 – 38)
= 1260 – 720 + 1136
= 1676
Δ3 = \(\left|\begin{array}{ccc}
5 & -6 & 15 \\
7 & 4 & 19 \\
2 & 1 & 46
\end{array}\right|\)
= 5(184 – 19) + 6(322 – 38) + 15(7 – 8)
= 825 + 1704 – 15
= 2529 – 15
= 2514
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q1(i)
Solution is x = 3, y = 4, z = 6.

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q1(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q1(ii).1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q1(ii).2
Solution is x = 3, y = 4, z = 6

(iii) Gauss-Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q1(iii)
∴ Unique solution exists.
Solution is x = 3, y = 4, z = 6.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 2.
x + y + z = 1
2x + 2y + 3z = 6
x + 4y + 9z = 3
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|\)
= 1(18 – 12) – 1(18 – 3) + 1(8 – 2)
= 6 – 15 + 6
= -3
Δ1 = \(\left|\begin{array}{lll}
1 & 1 & 1 \\
6 & 2 & 3 \\
3 & 4 & 9
\end{array}\right|\)
= 1(18 – 12) – 1(54 – 9) + 1(24 – 6)
= 6 – 45 + 18
= -21
Δ2 = \(\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 6 & 3 \\
1 & 3 & 9
\end{array}\right|\)
= 1(54 – 9) – 1(18 – 3) + 1(6 – 6)
= 45 – 15
= 30
Δ3 = \(\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 6 \\
1 & 4 & 3
\end{array}\right|\)
= 1(6 – 24) – 1(6 – 6) + 1(8 – 2)
= -18 – 0 + 6
= -12
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q2(i)
Solution is x = 7, y = -10, z = 4

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q2(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q2(ii).1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q2(ii).2
∴ Solution is x = 7, y = -10, z = 4

(iii) Gauss-Jordan method:
Augmented matrix is A = \(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 3 & 6 \\
1 & 4 & 9 & 3
\end{array}\right]\)
R2 → R2 – 2R1, R3 → R3 – R1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q2(iii)
Unique solution exists.
∴ Solution is x = 7, y = -10, z = 4

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 3.
x – y + 3z = 5
4x + 2y – z = 0
-x + 3y + z = 5
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
1 & -1 & 3 \\
4 & 2 & -1 \\
-1 & 3 & 1
\end{array}\right|\)
= 1(2 + 3) + 1(4 – 1) + 3(12 + 2)
= 5 + 3 + 42
= 50
Δ1 = \(\left|\begin{array}{ccc}
5 & -1 & 3 \\
0 & 2 & -1 \\
5 & 3 & 1
\end{array}\right|\)
= 5(2 + 3) + 1(0 + 5) + 3(0 – 10)
= 25 + 5 – 30
= 0
Δ2 = \(\left|\begin{array}{ccc}
1 & 5 & 3 \\
4 & 0 & -1 \\
-1 & 5 & 1
\end{array}\right|\)
= 1(0 + 5) – 5(4 – 1) + 3(20 – 0)
= 5 – 15 + 60
= 50
Δ3 = \(\left|\begin{array}{ccc}
1 & -1 & 5 \\
4 & 2 & 0 \\
-1 & 3 & 5
\end{array}\right|\)
= 1(10 – 0) + 1(20 – 0) + 5(12 + 2)
= 10 + 20 + 70
= 100
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q3(i)
∴ Solution is x = 0, y = 1, z = 2.

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q3(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q3(ii).1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q3(ii).2
Solution is x = 0, y = 1, z = 2

(iii) Gauss Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q3(iii)
Unique solution exists.
∴ Solution is x = 0, y = 1, z = 2

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 4.
2x + 6y + 11 = 0
6x + 20y – 6z + 3 = 0
6y – 18z + 1 = 0
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
2 & 6 & 0 \\
6 & 20 & -6 \\
0 & 6 & -18
\end{array}\right|\)
= 2(-360 + 36) – 6(-108 – 0)
= -648 + 648
= 0
∴ Cramer’s rule and matrix inversion method cannot be used.
∵ Δ = 0

(ii) Gauss Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q4(ii)
ρ(A) = 2, ρ(AB) = 3
ρ(A) ≠ ρ(AB)
∴ The given system of equations does not have a solution.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 5.
2x – y + 3z = 9
x + y + z = 6
x – y + z = 2
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right|\)
= 2(1 + 1) + 1(1 – 1) + 3(-1 – 1)
= 4 + 0 – 6
= -2
Δ1 = \(\left|\begin{array}{ccc}
9 & -1 & 3 \\
6 & 1 & 1 \\
2 & -1 & 1
\end{array}\right|\)
= 9(1 + 1) + 1(6 – 2) + 3(-6 – 2)
= 18 + 4 – 24
= -2
Δ2 = \(\left|\begin{array}{lll}
2 & 9 & 3 \\
1 & 6 & 1 \\
1 & 2 & 1
\end{array}\right|\)
= 2(6 – 2) – 9(1 – 1) + 3(2 – 6)
= 8 – 0 – 12
= -4
Δ3 = \(\left|\begin{array}{ccc}
2 & -1 & 9 \\
1 & 1 & 6 \\
1 & -1 & 2
\end{array}\right|\)
= 2(2 + 6) + 1(2 – 6) + 9(-1 – 1)
= 16 – 4 – 18
= -6
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q5(i)
Solution is x = 1, y = 2, z = 3.

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q5(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q5(ii).1
Solution is x = 1, y = 2, z = 3.

(iii) Gauss-Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q5(iii)
∴ The given equations have a unique solution.
Solution is x = 1, y = 2, z = 3

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 6.
2x – y + 8z = 13
3x + 4y + 5z = 18
5x – 2y + 7z = 20
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
2 & -1 & 8 \\
3 & 4 & 5 \\
5 & -2 & 7
\end{array}\right|\)
= 2(28 + 10) + 1(21 – 25) + 8(-6 – 20)
= 76 – 4 – 208
= -136
Δ1 = \(\left|\begin{array}{ccc}
13 & -1 & 8 \\
18 & 4 & 5 \\
20 & -2 & 7
\end{array}\right|\)
= 13(28 + 10) + 1(126 – 100) + 8(-36 – 80)
= 494 + 26 – 928
= -408
Δ2 = \(\left|\begin{array}{lll}
2 & 13 & 8 \\
3 & 18 & 5 \\
5 & 20 & 7
\end{array}\right|\)
= 2(126 – 100) – 13(21 – 25) + 8(60 – 90)
= 52 + 52 – 240
= -136
Δ3 = \(\left|\begin{array}{ccc}
2 & -1 & 13 \\
3 & 4 & 18 \\
5 & -2 & 20
\end{array}\right|\)
= 2(80 + 36) + 1(60 – 90) + 13(-6 – 20)
= 232 – 30 – 338
= -136
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q6(i)
∴ Solution is x = 3, y = 1, z = 1

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q6(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q6(ii).1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q6(ii).2
∴ Solution is x = 3, y = 1, z = 1

(iii) Gauss Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q6(iii)
∴ The given equations have a unique solution and Solution is x = 3, y = 1, z = 1.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 7.
2x – y + 3z = 8
-x + 2y + z = 4
3x + y – 4z = 0
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
2 & -1 & 3 \\
-1 & 2 & 1 \\
3 & 1 & -4
\end{array}\right|\)
= 2(-8 – 1) + 1(4 – 3) + 3(-1 – 6)
= -18 + 1 – 21
= -38
Δ1 = \(\left|\begin{array}{ccc}
8 & -1 & 3 \\
4 & 2 & 1 \\
0 & 1 & -4
\end{array}\right|\)
= 8(-8 – 1) + 1(-16 – 0) + 3(4 – 0)
= -72 – 16 + 12
= -76
Δ2 = \(\left|\begin{array}{ccc}
2 & 8 & 3 \\
-1 & 4 & 1 \\
3 & 0 & -4
\end{array}\right|\)
= 2(-16 – 0) – 8(4 – 3) + 3(-0 – 12)
= -32 – 8 – 36
= -76
Δ3 = \(\left|\begin{array}{ccc}
2 & -1 & 8 \\
-1 & 2 & 4 \\
3 & 1 & 0
\end{array}\right|\)
= 2(0 – 4) + 1(0 – 12) + 8(-1 – 6)
= -8 – 12 – 56
= -76
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q7(i)
∴ Solution is x = 2, y = 2, z = 2.

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q7(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q7(ii).1
Solution is x = 2, y = 2, z = 2

(iii) Gauss Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q7(iii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q7(iii).1
∴ The given equations have a unique solution and solution is x = 2, y = 2, z = 2.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(h)

Question 8.
x + y + z = 9
2x + 5y + 7z = 52
2x + y – z = 0
Solution:
(i) Cramer’s rule:
Δ = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right|\)
= 1(-5 – 7) – 1(-2 – 14) + 1(2 – 10)
= -12 + 16 – 8
= -4
Δ1 = \(\left|\begin{array}{ccc}
9 & 1 & 1 \\
52 & 5 & 7 \\
0 & 1 & -1
\end{array}\right|\)
= 9(-5 – 7) – 1(-52 – 0) + 1(52 – 0)
= -108 + 52 + 52
= -4
Δ2 = \(\left|\begin{array}{ccc}
1 & 9 & 1 \\
2 & 52 & 7 \\
2 & 0 & -1
\end{array}\right|\)
= 1(-52 – 0) – 9(-2 – 14) + 1(0 – 104)
= -52 + 144 – 104
= -12
Δ3 = \(\left|\begin{array}{ccc}
1 & 1 & 9 \\
2 & 5 & 52 \\
2 & 1 & 0
\end{array}\right|\)
= 1(0 – 52) – 1(0 – 104) + 9(2 – 10)
= -52 + 104 – 72
= -20
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q8(i)

(ii) Matrix inversion method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q8(ii)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q8(ii).1
Solution is x = 1, y = 3, z = 5

(iii) Gauss Jordan method:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(h) Q8(iii)
∴ The given equations have a unique solution and solution is x = 1, y = 3, z = 5.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(g)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(g) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(g)

Examine whether the following systems of equations are consistent or inconsistent and if consistent find the complete solutions.

Question 1.
x + y + z = 4
2x + 5y – 2z = 3
x + 7y – 7z = 5
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q1
ρ(A) = 2, ρ(AB) = 3
ρ(A) ≠ ρ(AB)
∴ The given system of equations are in consistent.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(g)

Question 2.
x + y + z = 6
x – y + z = 2
2x – y + 3z = 9
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q2
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q2.1

Question 3.
x + y + z = 1
2x + y + z = 2
x + 2y + 2z = 1
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q3
ρ(A) = 2 = ρ(AB) < 3
The given system of equations are consistent and have infinitely many solutions.
The solutions are given by [(x, y, z) 1x = 1, y + z = 0].

Question 4.
x + y + z = 9
2x + 5y + 7z = 52
2x + y – z = 0
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q4
∴ ρ(A) = ρ(AB) = 3
The given system of equations are consistent have a unique solution.
∴ Solution is given by x = 1, y = 3, z = 5.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(g)

Question 5.
x + y + z = 6
x + 2y + 3z = 10
x + 2y + 4z = 1
Solution:
Augmented matrix A = \(\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 10 \\
1 & 2 & 4 & 1
\end{array}\right]\)
By R2 → R2 – R1, R3 → R3 – R2, we obtain
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q5
∴ ρ(A) = ρ(AB) = 3
The given system of equations are consistent.
They have a unique solution.
∴ Solution is given by x = -7, y = 22, z = -9.

Question 6.
x – 3y – 8z = -10
3x + y – 4z = 0
2x + 5y + 6z = 13
Solution:
The Augmented matrix
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q6
ρ(A) = ρ(AB) = 2 < 3
∴ The given system of equations are consistent have infinitely many solutions.
x + y = 2 and y + 2z = 3
Taking z = k, y = 3 – 2z = 3-2k
x = 2 – y
= 2 – (3 – 2k)
= 2 – 3 + 2k
= 2k – 1
∴ The solutions are given by x = -1 + 2k, y = 3 – 2k, z = k where ‘k’ is any scalar.

Question 7.
2x + 3y + z = 9
x + 2y + 3z = 6
3x + y + 2z = 8
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q7
∴ ρ(A) = ρ(AB) = 3
The given system of equations are consistent have a unique solution.
∴ Solution is given by x = \(\frac{35}{18}\), y = \(\frac{29}{18}\), z = \(\frac{5}{18}\)

Inter 1st Year Maths 1A Matrices Solutions Ex 3(g)

Question 8.
x + y + 4z = 6
3x + 2y – 2z = 9
5x + y + 2z = 13
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(g) Q8
∴ ρ(A) = ρ(AB) = 3
∴ The given system of equations are consistent have a unique solution.
∴ Solution is given by x = 2, y = 2, z = \(\frac{1}{2}\)

Inter 1st Year Maths 1A Matrices Solutions Ex 3(f)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(f) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(f)

I. Find the rank of each of the following matrices.

Question 1.
\(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|\) = 0 – 0 = 0
and |1| = 1 ≠ 0
∴ ρ(A) = 1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(f)

Question 2.
\(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1 ≠ 0
∴ ρ(A) = 2

Question 3.
\(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right|\) = 0 – 0 = 0
|1| = 1 ≠ 0
∴ ρ(A) = 1

Question 4.
\(\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|\) = 0 – 1 = -1 ≠ 0
∴ ρ(A) = 2

Inter 1st Year Maths 1A Matrices Solutions Ex 3(f)

Question 5.
\(\left[\begin{array}{ccc}
1 & 0 & -4 \\
2 & -1 & 3
\end{array}\right]\)
Solution:
\(\left|\begin{array}{cc}
1 & -4 \\
2 & 3
\end{array}\right|\) = 3 + 8 = -11 ≠ 0
∴ ρ(A) = 2

Question 6.
\(\left[\begin{array}{lll}
1 & 2 & 6 \\
2 & 4 & 3
\end{array}\right]\)
Solution:
\(\left|\begin{array}{ll}
2 & 6 \\
4 & 3
\end{array}\right|\) = 6 – 24 = -18 ≠ 0
∴ ρ(A) = 2

II.

Question 1.
\(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
= 1(1 – 0) – 0(0 – 0) + 0(0 – 0)
= 1 – 0 + 0
= 1 ≠ 0
∴ ρ(A) = 3

Inter 1st Year Maths 1A Matrices Solutions Ex 3(f)

Question 2.
\(\left[\begin{array}{ccc}
1 & 4 & -1 \\
2 & 3 & 0 \\
0 & 1 & 2
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{ccc}
1 & 4 & -1 \\
2 & 3 & 0 \\
0 & 1 & 2
\end{array}\right|\)
= 1(6 – 0) – 2(8 + 1) + 0(0 + 3)
= 6 – 18
= -12 ≠ 0
∴ ρ(A) = 3

Question 3.
\(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\)
Solution:
Det A = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right|\)
= 1(6 – 4) – 2(4 – 3) + 0(8 – 9)
= 2 – 2 + 0
= 0
∴ ρ(A) ≠ 3, ρ(A) < 3
Take \(\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|\) = 3 – 4 = -1 ≠ 0
∴ ρ(A) = 2

Question 4.
\(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\), det A = 0, ρ(A) ≠ 3
All 2 × 2 sub-matrix det. is zero
∴ ρ(A) ≠ 2
|1| = 1 ≠ 0
∴ ρ(A) = 1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(f)

Question 5.
\(\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
3 & 4 & 1 & 2 \\
-2 & 3 & 2 & 5
\end{array}\right]\)
Solution:
Take sub-matrix B = \(\left|\begin{array}{ccc}
1 & 2 & 0 \\
3 & 4 & 1 \\
-2 & 3 & 2
\end{array}\right|\)
= 1(8 – 3) – 2(6 + 2)
= 5 – 16
= -11 ≠ 0
Rank of the given matrix is 3.

Question 6.
\(\left[\begin{array}{cccc}
0 & 1 & 1 & -2 \\
4 & 0 & 2 & 5 \\
2 & 1 & 3 & 1
\end{array}\right]\)
Solution:
Take sub matrix A = \(\left[\begin{array}{lll}
0 & 1 & 1 \\
4 & 0 & 2 \\
2 & 1 & 3
\end{array}\right]\)
= -1(12 – 4) + 1(4 – 0)
= -8 + 4
= -4 ≠ 0
∴ ρ(A) = 3

Inter 1st Year Maths 1A Matrices Solutions Ex 3(e)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(e) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(e)

I.

Question 1.
Find the adjoint and inverse of the following matrices.
(i) \(\left[\begin{array}{cc}
2 & -3 \\
4 & 6
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q1(i)

(ii) \(\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q1(ii)

Inter 1st Year Maths 1A Matrices Solutions Ex 3(e)

(iii) \(\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q1(iii)

(iv) \(\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q1(iv)

Question 2.
If A = \(\left[\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right]\), a2 + b2 + c2 + d2 = 1, then find the inverse of A.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q2

Question 3.
If A = \(\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 4 \\
-2 & 2 & 1
\end{array}\right]\), then find A-1
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q3

Question 4.
If A = \(\left|\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right|\), then show that the adjoint of A = 3A’ find A-1.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q4
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q4.1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q4.2

Inter 1st Year Maths 1A Matrices Solutions Ex 3(e)

Question 5.
If abc ≠ 0, find the inverse of \(\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q5
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) I Q5.1

II.

Question 1.
If A = \(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\) and B = \(\frac{1}{2}\left[\begin{array}{lll}
b+c & c-a & b-a \\
c-b & c+a & a-b \\
b-c & a-c & a+b
\end{array}\right]\) then show that ABA-1 is a diagonal matrix.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) II Q1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) II Q1.1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) II Q1.2

Question 2.
If 3A = \(\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right]\) then show that A-1 = A’
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) II Q2

Inter 1st Year Maths 1A Matrices Solutions Ex 3(e)

Question 3.
If A = \(\left[\begin{array}{rrr}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]\), then show that A-1 = A3
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(e) II Q3
∴ A4 = I
det A = 3(1) – 3(-2) + 4(-2) = 1
∵ A ≠ 0 ⇒ A-1 exists
∵ A4 = I
Multiply with A-1
A4 (A-1) = I (A-1)
⇒ A3 (AA-1) = A-1
⇒ A3 (I) = A-1
∴ A-1 = A3

Question 4.
If AB = I or BA = I, then prove that A is invertible and B = A-1
Solution:
Given AB = I
⇒ AB| = |1|
⇒ |A| |B| = 1
⇒ |A| ≠ 0
∴ A is a non-singular matrix and BA = I
⇒ |BA| = |I|
⇒ |B| |A| = 1
⇒ |A| ≠ 0
∴ A is a non-singular matrix.
AB = I or BA = I, A is invertible.
∴ A-1 exists.
AB = I
⇒ A-1AB = A-1I
⇒ IB = A-1
⇒ B = A-1
∴ B = A-1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(d) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(d)

I.

Question 1.
Find the determinants of the following matrices.
(i) \(\left[\begin{array}{cc}
2 & 1 \\
1 & -5
\end{array}\right]\)
Solution:
det A = ad – bc
= 2(-5) – 1(1)
= -10 – 1
= -11

(ii) \(\left[\begin{array}{cc}
4 & 5 \\
-6 & 2
\end{array}\right]\)
Solution:
det A = 4(2) – (-6)(5)
= 8 + 30
= 38

(iii) \(\left[\begin{array}{cc}
\mathbf{i} & 0 \\
0 & -\mathbf{i}
\end{array}\right]\)
Solution:
det A = -i2 – 0
= 1 – 0
= 1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

(iv) \(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\)
Solution:
det A = 0(0 – 1) – 1(0 – 1) + 1(1 – 0)
= 1 + 1
= 2

(v) \(\left[\begin{array}{ccc}
1 & 4 & 2 \\
2 & -1 & 4 \\
-3 & 7 & 6
\end{array}\right]\)
Solution:
det A = 1(-6 – 28) – 4(12 + 12) + 2(14 – 3)
= -34 – 96 + 22
= -108

(vi) \(\left[\begin{array}{ccc}
2 & -1 & 4 \\
4 & -3 & 1 \\
1 & 2 & 1
\end{array}\right]\)
Solution:
det A = 2(-3 – 2) + 1(4 – 1) + 4(8 + 3)
= -10 + 3 + 44
= 37

(vii) \(\left[\begin{array}{ccc}
1 & 2 & -3 \\
4 & -1 & 7 \\
2 & 4 & -6
\end{array}\right]\)
Solution:
det A = 0 since R1 and R3 are proportional.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

(viii) \(\left[\begin{array}{lll}
a & h & g \\
\text { h } & b & f \\
g & f & c
\end{array}\right]\)
Solution:
det A = a(bc – f2) – h(ch – fg) + g(hf – bg)
= abc – af2 – ch2 + fgh + fgh – bg2
= abc + 2fgh – af2 – bg2 – ch2

(ix) \(\left[\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{b} & \mathbf{c} & \mathbf{a} \\
\mathbf{c} & \mathbf{a} & \mathbf{b}
\end{array}\right]\)
Solution:
det A = a(bc – a2) – b(b2 – ac) + c(ab – c2)
= abc – a3 – b3 + abc + abc – c3
= 3abc – a3 – b3 – c3

(x) \(\left[\begin{array}{ccc}
1^{2} & 2^{2} & 3^{2} \\
2^{2} & 3^{2} & 4^{2} \\
3^{2} & 4^{2} & 5^{2}
\end{array}\right]\)
Solution:
det A = \(\left|\begin{array}{ccc}
1 & 4 & 9 \\
4 & 9 & 16 \\
9 & 16 & 25
\end{array}\right|\)
= 1(225 – 256) – 4(100 – 144) – 9(64 – 81)
= -31 + 176 – 153
= -184 + 176
= -8

Question 2.
If A = \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 4 \\
5 & -6 & x
\end{array}\right]\) and det A = 45 then find x.
Solution:
det A = 45
\(\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 4 \\
5 & -6 & x
\end{array}\right|\) = 45
⇒ 3x + 24 = 45
⇒ 3x – 45 + 24 = 0
⇒ 3x – 21 = 0
⇒ x = 7

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

II.

Question 1.
Show that \(\left|\begin{array}{lll}
b c & b+c & 1 \\
c a & c+a & 1 \\
a b & a+b & 1
\end{array}\right|\) = (a – b)(b – c)(c – a)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q1

Question 2.
Show that \(\left|\begin{array}{ccc}
\mathbf{b}+\mathbf{c} & \mathbf{c}+\mathbf{a} & \mathbf{a}+\mathbf{b} \\
\mathbf{a}+\mathbf{b} & \mathbf{b}+\mathbf{c} & \mathbf{c}+\mathbf{a} \\
\mathbf{a} & \mathbf{b} & \mathbf{c}
\end{array}\right|\) = a3 + b3 + c3 – 3abc
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q2
= (a + b + c) [(-ac + b2) – (-c2 + ab) + (-bc + a2)]
= (a + b + c) (-ac + b2 + c2 – ab – bc + a2)
= (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
= a3 + b3 + c3 – 3abc

Question 3.
Show that \(\left|\begin{array}{ccc}
\mathbf{y}+\mathbf{z} & \mathbf{x} & \mathbf{x} \\
\mathbf{y} & \mathbf{z}+\mathbf{x} & \mathbf{y} \\
\mathbf{z} & \mathbf{z} & \mathbf{x}+\mathbf{y}
\end{array}\right|\) = 4xyz
Solution:
L.H.S = \(\left|\begin{array}{ccc}
\mathbf{y}+\mathbf{z} & \mathbf{x} & \mathbf{x} \\
\mathbf{y} & \mathbf{z}+\mathbf{x} & \mathbf{y} \\
\mathbf{z} & \mathbf{z} & \mathbf{x}+\mathbf{y}
\end{array}\right|\)
= (y + z) [(z + x) (x + y) – yz] – x[y(x + y) – yz] + x[yz – z(z + x)]
= (y + z) (zx + yz + x2 + xy – yz) – x(xy + y2 – yz) + x(yz – z2 – zx)
= (y + z) (zx + x2 + xy) – x(xy + y2 – yz) + x(yz – z2 – zx)
= xyz + x2y + xy2 + xz2 + x2z + xyz – x2y – xy2 + xyz + xyz – xz2 – x2z
= 4xyz
= R.H.S

Question 4.
If \(\left|\begin{array}{ccc}
a & a^{2} & 1+a^{3} \\
b & b^{2} & 1+b^{3} \\
c & c^{2} & 1+c^{3}
\end{array}\right|\) = 0 and \(\left|\begin{array}{ccc}
a & a^{2} & 1 \\
b & b^{2} & 1 \\
c & c^{2} & 1
\end{array}\right|\) ≠ 0 then show that abc = -1
Hint: If each element in a row (column) of a square matrix is the sum of two numbers, then its discriminant can be expressed as the sum of discriminants of two square matrices.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q4
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q4.1

Question 5.
Without expanding the determinant, prove that
(i) \(\left|\begin{array}{ccc}
a & a^{2} & b c \\
b & b^{2} & c a \\
c & c^{2} & a b
\end{array}\right|=\left|\begin{array}{ccc}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q5(i)

(ii) \(\left|\begin{array}{ccc}
a x & b y & c z \\
x^{2} & y^{2} & z^{2} \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
x & y & z \\
y z & z x & x y
\end{array}\right|\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q5(ii)

(iii) \(\left|\begin{array}{lll}
1 & b c & b+c \\
1 & c a & c+a \\
1 & a b & a+b
\end{array}\right|=\left|\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|\)
Solution:
L.H.S = \(\left|\begin{array}{ccc}
1 & b c & b+c \\
1 & c a & c+a \\
1 & a b & a+b
\end{array}\right|\)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q5(iii)
= (b – a) (c – a) (c + a – b – a)
= (a – b) (b – c) (c – a)
∴ LHS = RHS

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

Question 6.
If ∆1 = \(\left|\begin{array}{ccc}
a_{1}^{2}+b_{1}+c_{1} & a_{1} a_{2}+b_{2}+c_{2} & a_{1} a_{3}+b_{3}+c_{3} \\
b_{1} b_{2}+c_{1} & b_{2}^{2}+c_{2} & b_{2} b_{3}+c_{3} \\
c_{3} c_{1} & c_{3} c_{2} & c_{3}^{2}
\end{array}\right|\) and ∆2 = \(\left|\begin{array}{lll}
a_{1} & b_{2} & c_{2} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|\), then find the value of \(\frac{\Delta_{1}}{\Delta_{2}}\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q6
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) II Q6.1

Question 7.
If ∆1 = \(\left|\begin{array}{ccc}
1 & \cos \alpha & \cos \beta \\
\cos \alpha & 1 & \cos \gamma \\
\cos \beta & \cos \alpha & 1
\end{array}\right|\), ∆2 = \(\left|\begin{array}{ccc}
0 & \cos \alpha & \cos \beta \\
\cos \alpha & 0 & \cos \gamma \\
\cos \beta & \cos \gamma & 0
\end{array}\right|\) and ∆1 = ∆2, then show that cos2α + cos2β + cos2γ = 1
Solution:
1 = \(\left|\begin{array}{ccc}
1 & \cos \alpha & \cos \beta \\
\cos \alpha & 1 & \cos \gamma \\
\cos \beta & \cos \alpha & 1
\end{array}\right|\)
= 1(1 – cos2γ) – cos α (cos α – cos β cos γ) + cos β (cos α cos γ – cos β)
= 1 – cos2γ – cos2α + cos α cos β cos γ + cos α cos β cos γ – cos2β
= 1 – cos2γ – cos2α – cos2β + 2 cos α cos β cos γ
2 = \(\left|\begin{array}{ccc}
0 & \cos \alpha & \cos \beta \\
\cos \alpha & 0 & \cos \gamma \\
\cos \beta & \cos \gamma & 0
\end{array}\right|\)
= 0(0 – cos2γ) – cos α (0 – cos γ cos β) + cos β (cos α cos γ – 0)
= cos α cos β cos γ + cos α cos β cos γ
= 2 cos α cos β cos γ
Given ∆1 = ∆2
1 – cos2α – cos2β – cos2γ + 2 cos α cos β cos γ = 2 cos α cos β cos γ
1 – cos2α – cos2β – cos2γ = 0
1 = cos2α + cos2β + cos2γ

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

III.

Question 1.
Show that \(\left|\begin{array}{ccc}
\mathbf{a}+\mathbf{b}+2 \mathbf{c} & \mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{b}+\mathbf{c}+\mathbf{2} \mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{a} & \mathbf{c}+\mathbf{a}+\mathbf{2} \mathbf{b}
\end{array}\right|\) = 2(a + b + c)3
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q1

Question 2.
Show that \(\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|^{2}\) = \(\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 a c-b^{2} & a^{2} \\
b^{2} & a^{2} & 2 a b-c^{2}
\end{array}\right|\) = (a3 + b3 + c3 – 3abc)2
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q2
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q2.1

Question 3.
Show that \(\left|\begin{array}{ccc}
a^{2}+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\) = (a – 1)3
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q3

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

Question 4.
Show that \(\left|\begin{array}{ccc}
a & b & c \\
a^{2} & b^{2} & c^{2} \\
a^{3} & b^{3} & c^{3}
\end{array}\right|\) = abc(a – b)(b – c)(c – a)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q4

Question 5.
Show that \(\left|\begin{array}{ccc}
-2 \mathbf{a} & \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} \\
\mathbf{a}+\mathbf{b} & -\mathbf{2} \mathbf{b} & \mathbf{b}+\mathbf{c} \\
\mathbf{c}+\mathbf{a} & \mathbf{c}+\mathbf{b} & -2 \mathbf{c}
\end{array}\right|\) = 4(a + b) (b + c) (c + a)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q5
∴ (c + a) is a factor for ∆
Similarly a + b, b + c are also factors ∆.
∵ ∆ is a third-degree expression in a, b, c.
∆ = k(a + b) (b + c) (c + a),
where k is a non-zero scalar.
Put a = 1, b = 1, c = 1, then
\(\left|\begin{array}{ccc}
-2 & 2 & 2 \\
2 & -2 & 2 \\
2 & 2 & -2
\end{array}\right|\) = k(1 + 1) (1 + 1) (1 + 1)
⇒ -2(4 – 4) – 2(-4 – 4) + 2(4 + 4) = 8k
⇒ 16 + 16 = 8k
⇒ k = 4
∴ ∆ = 4(a + b) (b + c) (c + a)
Hence \(\left|\begin{array}{ccc}
-2 \mathbf{a} & \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} \\
\mathbf{a}+\mathbf{b} & -\mathbf{2} \mathbf{b} & \mathbf{b}+\mathbf{c} \\
\mathbf{c}+\mathbf{a} & \mathbf{c}+\mathbf{b} & -2 \mathbf{c}
\end{array}\right|\) = 4(a + b) (b + c) (c + a)

Inter 1st Year Maths 1A Matrices Solutions Ex 3(d)

Question 6.
Show that \(\left|\begin{array}{lll}
\mathbf{a}-\mathbf{b} & \mathbf{b}-\mathbf{c} & \mathbf{c}-\mathbf{a} \\
\mathbf{b}-\mathbf{c} & \mathbf{c}-\mathbf{a} & \mathbf{a}-\mathbf{b} \\
\mathbf{c}-\mathbf{a} & \mathbf{a}-\mathbf{b} & \mathbf{b}-\mathbf{c}
\end{array}\right|\)
Solution:
L.H.S = \(\left|\begin{array}{ccc}
0 & 0 & 0 \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|\) = 0
By R1 → R1 + (R2 + R3)

Question 7.
Show that \(\left|\begin{array}{ccc}
1 & a & a^{2}-b c \\
1 & b & b^{2}-c a \\
1 & c & c^{2}-a b
\end{array}\right|\) = 0
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q7

Question 8.
Show that \(\left|\begin{array}{lll}
\mathbf{x} & \mathbf{a} & \mathbf{a} \\
\mathbf{a} & \mathbf{x} & \mathbf{a} \\
\mathbf{a} & \mathbf{a} & \mathbf{x}
\end{array}\right|\) = (x + 2a) (x – a)2
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(d) III Q8

Inter 1st Year Maths 1A Matrices Solutions Ex 3(c)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(c) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(c)

I.

Question 1.
If A = \(\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 1 & 5
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & -2
\end{array}\right]\), then find (AB’)’.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(c)

Question 2.
If A = \(\left[\begin{array}{cc}
-2 & 1 \\
5 & 0 \\
-1 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
-2 & 3 & 1 \\
4 & 0 & 2
\end{array}\right]\) then find 2A + B’ and 3B’ – A.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q2
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q2.1

Question 3.
If A = \(\left[\begin{array}{cc}
2 & -4 \\
-5 & 3
\end{array}\right]\), then find A + A’ and A.A’
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q3

Question 4.
If A = \(\left[\begin{array}{ccc}
-1 & 2 & 3 \\
2 & 5 & 6 \\
3 & x & 7
\end{array}\right]\) is a symmetric matrix, then find x.
Hint: ‘A’ is a symmetric matrix ⇒ AT = A
Solution:
A is a symmetric matrix
⇒ A’ = A
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q4
Equating 2nd row, 3rd column elements we get x = 6.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(c)

Question 5.
If A = \(\left[\begin{array}{ccc}
0 & 2 & 1 \\
-2 & 0 & -2 \\
-1 & x & 0
\end{array}\right]\) is a skew-symmetric matrix, find x.
Solution:
∵ A is a skew-symmetric matrix
⇒ AT = -A
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q5
Equating second-row third column elements we get x = 2.

Question 6.
Is \(\left[\begin{array}{ccc}
0 & 1 & 4 \\
-1 & 0 & 7 \\
-4 & -7 & 0
\end{array}\right]\) symmetric or skewsymmetric?
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) I Q6
∴ A is a skew-symmetric matrix.

II.

Question 1.
If A = \(\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\), show that A.A’ = A’. A = I2
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) II Q1
From (1), (2) we get A.A’ = A’. A = I2

Inter 1st Year Maths 1A Matrices Solutions Ex 3(c)

Question 2.
If A = \(\left[\begin{array}{ccc}
1 & 5 & 3 \\
2 & 4 & 0 \\
3 & -1 & -5
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 5 \\
1 & 2 & 0
\end{array}\right]\) then find 3A – 4B’.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) II Q2

Question 3.
If A = \(\left[\begin{array}{cc}
7 & -2 \\
-1 & 2 \\
5 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
-2 & -1 \\
4 & 2 \\
-1 & 0
\end{array}\right]\) then find AB’ and BA’.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) II Q3
Inter 1st Year Maths 1A Matrices Solutions Ex 3(c) II Q3.1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(c)

Question 4.
For any square matrix A, Show that AA’ is symmetric.
Solution:
A is a square matrix
(AA’)’ = (A’)’A’ = A.A’
∵ (AA’)’ = AA’
⇒ AA’ is a symmetric matrix.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(b) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(b)

I.

Question 1.
Find the following products wherever possible.
Hint: (1 × 3) by (3 × 1) = 1 × 1
(i) \(\left[\begin{array}{lll}
-1 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]\)
(ii) \(\left[\begin{array}{ccc}
2 & 1 & 4 \\
6 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\)
(iii) \(\left[\begin{array}{cc}
3 & -2 \\
1 & 6
\end{array}\right]\left[\begin{array}{cc}
4 & -1 \\
2 & 5
\end{array}\right]\)
(iv) \(\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 0 & 2 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
-2 & -3 & 4 \\
2 & 2 & -3 \\
1 & 2 & -2
\end{array}\right]\)
(v) \(\left[\begin{array}{ccc}
3 & 4 & 9 \\
0 & -1 & 5 \\
2 & 6 & 12
\end{array}\right]\left[\begin{array}{ccc}
13 & -2 & 0 \\
0 & 4 & 1
\end{array}\right]\)
(vi) \(\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 4 \\
6 & -2 & 3
\end{array}\right]\)
(vii) \(\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
(viii) \(\left[\begin{array}{ccc}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right]\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q1
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q1.1

(v) \(\left[\begin{array}{ccc}
3 & 4 & 9 \\
0 & -1 & 5 \\
2 & 6 & 12
\end{array}\right]\left[\begin{array}{ccc}
13 & -2 & 0 \\
0 & 4 & 1
\end{array}\right]\)
First matrix is a 3 × 3 matrix and second matrix is 2 × 3 matrix.
No. of columns in the first matrix ≠ No. of rows in the second matrix.
∴ Matrix product is not possible.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

(vi) \(\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 4 \\
6 & -2 & 3
\end{array}\right]\)
No. of columns in first matrix = 1
No. of rows in second matrix = 2
No. of columns in the first matrix ≠ No. of rows in the second matrix
Multiplication of matrices is not possible.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q1.2

Question 2.
If A = \(\left[\begin{array}{ccc}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right]\), do AB and BA exist? If they exist, find them. Do A and B commute with respect to multiplication?
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q2
AB ≠ BA
∴ A and B are not commutative with respect to the multiplication of matrices.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

Question 3.
Find A2 where A = \(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q3

Question 4.
If A = \(\left[\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right]\), find A2.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q4

Question 5.
If A = \(\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\), B = \(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\) and C = \(\left[\begin{array}{ll}
0 & \mathbf{i} \\
\mathbf{i} & \mathbf{0}
\end{array}\right]\), and I is the unit matrix of order 2, then show that
(i) A2 = B2 = C2 = -I
(ii) AB = -BA = -C
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q5

Question 6.
If A = \(\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
3 & 2 & 0 \\
1 & 0 & 4
\end{array}\right]\), find AB. Find BA if it exists.
Solution:
Given A = \(\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
3 & 2 & 0 \\
1 & 0 & 4
\end{array}\right]\)
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q6
The order of AB is 2 × 3
BA does not exist since no. of columns in B ≠ No. of rows in A.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

Question 7.
If A = \(\left[\begin{array}{cc}
2 & 4 \\
-1 & k
\end{array}\right]\) and A2 = 0, then find the value of k.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) I Q7

II.

Question 1.
If A = \(\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\) then find A4.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q1

Question 2.
If A = \(\left[\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right]\) then find A3.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q2
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q2.1

Question 3.
If A = \(\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]\), then find A3 – 3A2 – A – 3I, where I is unit matrix of order 3 × 3.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q3
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q3.1

Question 4.
If I = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) and E = \(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\), show that (aI + bE)3 = a3I + 3a2bE, Where I is unit matrix of order 2.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) II Q4

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

III.

Question 1.
If A = [a1, a2, a3,], then for any integer n ≥ 1 show that An = \(\left[\begin{array}{lll}
a_{1}, & a_{2}^{n}, & a_{3}^{n}
\end{array}\right]\)
Solution:
Given A = diag [a1, a2, a3,] = \(\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right]\)
An = diag \(\left[\begin{array}{lll}
a_{1}^{n} & a_{2}^{n} & a_{3}^{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{1}^{n} & 0 & 0 \\
0 & a_{2}^{n} & 0 \\
0 & 0 & a_{3}^{n}
\end{array}\right]\)
This problem can be should by using Mathematical Induction
put n = 1
A1 = \(\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right]\)
∴ The result is true for n = 1
Assume the result is true for n = k
Ak = \(\left[\begin{array}{ccc}
a_{1}^{k} & 0 & 0 \\
0 & a_{2}^{k} & 0 \\
0 & 0 & a_{3}^{k}
\end{array}\right]\)
Consider
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) III Q1
∴ The result is true for n = k + 1
Hence by the Principle of Mathematical Induction, the statement is true ∀ n ∈ N

Question 2.
If θ – φ = \(\frac{\pi}{2}\), then show that \(\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \dot{\theta}
\end{array}\right]\) \(\left[\begin{array}{cc}
\cos ^{2} \phi & \cos \phi \sin \phi \\
\cos \phi \sin \phi & \sin ^{2} \phi
\end{array}\right]\) = 0
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) III Q2
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) III Q2.1

Question 3.
If A = \(\left[\begin{array}{rr}
3 & -4 \\
1 & -1
\end{array}\right]\) then show that An = \(\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right]\), for any integer n ≥ 1 by using Mathematical Induction.
Solution:
We shall prove the result by Mathematical Induction.
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) III Q3
∴ The given result is true for n = k + 1
By Mathematical Induction, the given result is true for all positive integral values of n.

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

Question 4.
Give examples of two square matrices A and B of the same order for which AB = 0 but BA ≠ 0.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(b) III Q4

Question 5.
A Trust fund has to invest ₹ 30,000 in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹ 30,000 among the two types of bonds if the trust fund must obtain an annual total interest of (a) ₹ 1800 (b) ₹ 2000
Solution:
Let the first bond be ‘x’ and the second bond be 30,000 – x respectively
The rate of interest is 0.05 and 0.07 respectively.
(a) \([x, 30,000-x]\left[\begin{array}{l}
0.05 \\
0.07
\end{array}\right] \quad=[1800]\)
[0.05x + 0.07(30,000 – x)] = 1800
\(\frac{5}{100} x+\frac{7}{100}(30,000-x)=1800\)
5x + 21,0000 – 7x = 1,80,000
-2x = 1,80,000 – 2,10,000 = -30,000
x = 15,000
∴ First bond = 15,000
Second bond = 30,000 – 15,000 = 15,000

Inter 1st Year Maths 1A Matrices Solutions Ex 3(b)

(b) \(\left[\begin{array}{ll}
x & 30,000-x
\end{array}\right]\left[\begin{array}{l}
0.05 \\
0.07
\end{array}\right]=[2000]\)
[0.05x + 0.07(30,000 – x)] = [2000]
\(\frac{5 x}{100} \times \frac{7}{100}(30,000-x)=2000\)
5x + 2,10,000 – 7x = 2,00,000
-2x = 2,00,000 – 2,10,000
-2x = -10,000
x = 5,000
∴ First bond = 5000
Second bond = 30,000 – 5000 = 25,000

Inter 1st Year Maths 1A Matrices Solutions Ex 3(a)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(a) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(a)

I.

Question 1.
Write the following as a single matrix.
(i) \(\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\)
(ii) \(\left[\begin{array}{ccc}
3 & 9 & 0 \\
1 & 8 & -2
\end{array}\right]+\left[\begin{array}{ccc}
4 & 0 & 2 \\
7 & 1 & 4
\end{array}\right]\)
(iii) \(\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\)
(iv) \(\left[\begin{array}{cc}
-1 & 2 \\
2 & -2 \\
3 & 1
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
-2 & 1
\end{array}\right]\)
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) I Q1

Question 2.
If A = \(\left[\begin{array}{cc}
-1 & 3 \\
4 & 2
\end{array}\right]\), B = \(\left[\begin{array}{cc}
2 & 1 \\
3 & -5
\end{array}\right]\), X = \(\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]\) and A + B = X, then find the values of x1, x2, x3 and x4.
Solution:
A + B = X
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) I Q2
∴ x1 = 1, x2 = 4, x3 = 7, x4 = -3

Inter 1st Year Maths 1A Matrices Solutions Ex 3(a)

Question 3.
If A = \(\left[\begin{array}{ccc}
-1 & -2 & 3 \\
1 & 2 & 4 \\
2 & -1 & 3
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
1 & -2 & 5 \\
0 & -2 & 2 \\
1 & 2 & -3
\end{array}\right]\) and C = \(\left[\begin{array}{ccc}
-2 & 1 & 2 \\
1 & 1 & 2 \\
2 & 0 & 1
\end{array}\right]\) then find A + B + C.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) I Q3

Question 4.
If A = \(\left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & -2 & 0 \\
1 & 3 & 1
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
-3 & -1 & 0 \\
2 & 1 & 3 \\
4 & -1 & 2
\end{array}\right]\) and X = A + B then find X.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) I Q4

Question 5.
If \(\left[\begin{array}{cc}
x-3 & 2 y-8 \\
z+2 & 6
\end{array}\right]=\left[\begin{array}{cc}
5 & 2 \\
-2 & a-4
\end{array}\right]\) then find the values of x, y, z and a.
Solution:
Given \(\left[\begin{array}{cc}
x-3 & 2 y-8 \\
z+2 & 6
\end{array}\right]=\left[\begin{array}{cc}
5 & 2 \\
-2 & a-4
\end{array}\right]\)
∴ x – 3 = 5 ⇒ x = 3 + 5 = 8
2y – 8 = 2 ⇒ 2y = 8 + 2 = 10 ⇒ y = 5
z + 2 = -2 ⇒ z = -2 – 2 = -4
a – 4 = 6 ⇒ a = 4 + 6 = 10

II.

Question 1.
If \(\left[\begin{array}{ccc}
x-1 & 2 & 5-y \\
0 & z-1 & 7 \\
1 & 0 & a-5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 7 \\
1 & 0 & 0
\end{array}\right]\) then find the values of x, y, z and a.
Solution:
Given \(\left[\begin{array}{ccc}
x-1 & 2 & 5-y \\
0 & z-1 & 7 \\
1 & 0 & a-5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 7 \\
1 & 0 & 0
\end{array}\right]\)
∴ x – 1 = 1 ⇒ x = 1 + 1 = 2
5 – y = 3 ⇒ y = 5 – 3 = 2
z – 1 = 4 ⇒ z = 4 + 1 = 5
a – 5 = 0 ⇒ a = 5

Inter 1st Year Maths 1A Matrices Solutions Ex 3(a)

Question 2.
Find the trace of \(\left[\begin{array}{ccc}
1 & 3 & -5 \\
2 & -1 & 5 \\
1 & 0 & 1
\end{array}\right]\)
Solution:
Trace of \(\left[\begin{array}{ccc}
1 & 3 & -5 \\
2 & -1 & 5 \\
1 & 0 & 1
\end{array}\right]\) = Sum of the diagonal elements
= 1 – 1 + 1
= 1

Question 3.
If A = \(\left[\begin{array}{rrr}
0 & 1 & 2 \\
2 & 3 & 4 \\
4 & 5 & -6
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) find B – A and 4A – 5B.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) II Q3
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) II Q3.1

Inter 1st Year Maths 1A Matrices Solutions Ex 3(a)

Question 4.
If A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]\) find 3B – 2A.
Solution:
Inter 1st Year Maths 1A Matrices Solutions Ex 3(a) II Q4

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Mathematical Induction Solutions Exercise 2(a) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Mathematical Induction Solutions Exercise 2(a)

Using mathematical induction, prove each of the following statements for all n ∈ N.

Question 1.
12 + 22 + 32 + …… + n2 = \(\frac{n(n+1)(2 n+1)}{6}\)
Solution:
Let p(n) be the given statement:
12 + 22 + 32 + ….. + n2 = \(\frac{n(n+1)(2 n+1)}{6}\)
Since 12 = \(\frac{(1)(1+1)(2 \times 1+1)}{6}\)
⇒ 1 = 1 the formula is true for n = 1
i.e., p(1) is true.
Assume the statement p(n) is true for n = k
i.e., 12 + 22 + 32 + …… + 1k2 = \(\frac{k(k+1)(2 k+1)}{6}\)
We show that the formula is true for n = k + 1
i.e., We show that p(k + 1) = \(\frac{(k+1)(k+2)(2 k+3)}{6}\)
(Where p(k) = 12 + 22 + 32 + … + k2)
We observe that
p(k + 1) = 12 + 22 + 32 + …… + (k)2 + (k + 1)2 = p(k) + (k + 1)2
Since p(k) = \(\frac{k(k+1)(2 k+1)}{6}\)
We have p(k + 1) = p(k) + (k + 1)2
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q1
∴ The formula holds for n = k + 1
∴ By the principle of mathematical induction, p(n) is true for all n ∈ N
i.e., the formula 12 + 22 + 32 + ……. + n2 = \(\frac{n(n+1)(2 n+1)}{6}\) for all n ∈ N

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 2.
2.3 + 3.4 + 4.5 + …… up to n terms = \(\frac{n\left(n^{2}+6 n+11\right)}{3}\)
Solution:
The nth term in the given series is (n + 1) (n + 2)
Let p(n) be the statement:
2.3 + 3.4 + 4.5 + …… + (n + 1) (n + 2) = \(\frac{n\left(n^{2}+6 n+11\right)}{3}\)
and let S(n) be the sum on the left-hand side.
Since S(1) = 2.3 = \(\frac{(1)(1+6+11)}{3}\) = 6
∴ The statement is true for n = 1
Assume that the statement p(n) is true for n = k
i.e., S(k) = 2.3 + 3.4 + …… + (k + 1) (k + 2) = \(\frac{k\left(k^{2}+6 k+11\right)}{3}\)
We show that the statement is true for n = k + 1
i.e., We show that S(k + 1) = \((k+1)\left[\frac{(k+1)^{2}+6(k+1)+11}{3}\right]\)
We observe that
S(k + 1) = 2.3 + 3.4 + 4.5 + + (k + 1) (k + 2) + (k + 2) (k + 3)
= S(k) + (k + 2) (k + 3)
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q2
∴ The statement holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
i.e., 2.3 + 3.4 + 4.5 + ……. + (n + 1) (n + 2) = \(\frac{n\left(n^{2}+6 n+11\right)}{3}\)

Question 3.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\)
Solution:
Let p(n) be the statement:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\)
and let S(n) be the sum on the L.H.S.
Since S(1) = \(\frac{1}{1.3}=\frac{1}{1(2+1)}=\frac{1}{1.3}\)
∴ P(1) is true.
Assume that the statement p(n) is true for n = k
i.e., S(k) = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}\) = \(\frac{k}{2 k+1}\)
We show that the statement p(n) is true for n = k + 1
i.e., we show that s(k + 1) = \(\frac{k+1}{2(k+1)+1}\)
We observe that
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q3
∴ The statement holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
i.e., \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\)

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 4.
43 + 83 + 123 + …… up to n terms = 16n2(n + 1)2.
Solution:
4, 8, 12,….. are in A.P., whose nth term is (4n)
Let p(n) be the statement:
43 + 83 + 123 + ………. + (4n)3 = 16n2(n + 1)2
and S(n) be the sum on the L.H.S.
S(1) = 43 = 16(12) (1 + 1)2 = 16(4) = 64 = 43
∴ p(1) is true
Assume that the statement p(n) is true for n = k
i.e., S(k) = 43 + 83 + (12)3 + …… + (4k)3 = 16k2(k + 1)2
We show that the statement is true for n = k + 1
i.e., We show that S(k + 1) = 16(k + 1)2 (k + 2)2
We observe that
S(k + 1) = 43 + 83 + 123 + …… + (4k)3 + [4(k + 1)]3
= S(k) + [4(k + 1)]3
= 16k2 (k + 1)2 + 43 (k + 1)3
= 16(k + 1)2 [k2 + 4(k + 1)]
= 16(k + 1)2 [k2 + 4k + 4]
= 16(k + 1)2 (k + 2)2
= 16(k + 1)2 \((\overline{k+1}+1)^{2}\)
∴ The formula holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
(i.e.,) 43 + 83 + 123 + …… + (4n)3 = 16n2(n + 1)2

Question 5.
a + (a + d) + (a + 2d) + ……. up to n terms = \(\frac{n}{2}\) [2a + (n – 1)d]
Solution:
Let p(n) be the statement:
a + (a + d) + (a + 2d) + …… + [a + (n – 1)d] = \(\frac{n}{2}\) [2a + (n – 1)d]
and let the sum on the L.H.S. is denoted by S(n)
Since S(1) = a = \(\frac{1}{2}\) [2a + (1 – 1)d] = a
∴ p(1) is true.
Assume that the statement is true for n = k
(i.e.,) S(k) = a + (a + d) + (a + 2d) + ……. + [a + (k – 1)d] = \(\frac{k}{2}\) [2a + (k – 1 )d]
We show that the statement is true for n = k + 1
(i.e.,) we show that S(k + 1) = \(\left(\frac{k+1}{2}\right)[2 a+k d]\)
We observe that
S(k + 1) = a + (a + d) + (a + 2d) + …… + [a + (k – 1)d] + (a + kd)
= S(k) + (a + kd)
= \(\frac{k}{2}\) [2a + (k – 1)d] + (a + kd)
= \(\frac{k[2 a+(k-1) d]+2(a+k d)}{2}\)
= \(\frac{1}{2}\) [2ak + k(k – 1)d + 2a + 2kd]
= \(\frac{1}{2}\) [2a(k + 1) + k(k – 1 + 2)d]
= \(\frac{1}{2}\) (k + 1)(2a + kd)
∴ The statement holds for n = k + 1
∴ By the principle of mathematical inductions,
p(n) is true for all n ∈ N
(i.e.,) a + (a + d) + (a + 2d) + …… + [a + (n – 1)d] = \(\frac{n}{2}\) [2a + (n – 1)d]

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 6.
a + ar + ar2 + ……… up to n terms = \(\frac{a\left(r^{n}-1\right)}{r-1}\); r ≠ 1
Solution:
Let p(n) be the statement:
a + ar + a.r2 + …… + a. rn-1 = \(\frac{a\left(r^{n}-1\right)}{r-1}\), r ≠ 1
and let S(n) be the sum on the L.H.S
Since S(1) = a = \(\frac{a\left(r^{1}-1\right)}{r-1}\) = a
∴ p(1) is true
Assume that the statement is true for n = k
(i.e) S(k) = a + ar + ar2 + ……… + a . rk-1 = \(\frac{a\left(r^{k}-1\right)}{r-1}\)
We show that the statement is true for n = k + 1
(i.e) S(k + 1) = \(\frac{a\left(r^{k+1}-1\right)}{r-1}\)
Now S(k + 1) = a + ar + ar2 + ……. + a rk-1 + ark
= S(k) + a . rk
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q6
∴ The statement holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
(i.e) a + ar + ar2 + ……. + a.rn-1 = \(\frac{a\left(r^{n}-1\right)}{r-1}\), r ≠ 1

Question 7.
2 + 7 + 12 + ……. + (5n – 3) = \(\frac{n(5 n-1)}{2}\)
Solution:
Let p(n) be the statement:
2 + 7 + 12 + ……. + (5n – 3) = \(\frac{n(5 n-1)}{2}\)
and let S(n) be the sum on the L.H.S
Since S(1) = 2 = \(\frac{1(5 \times 1-1)}{2}=\frac{4}{2}\) = 2
∴ p(1) is true
Assume that the statement is true for n = k
(i.e) S(k) = 2 + 7 + 12 + …….. + (5k – 3) = \(\frac{k(5 k-1)}{2}\)
We have to show that S(k + 1) = \(\frac{(k+1)(5 k+4)}{2}\)
We observe that S(k + 1) = 2 + 7 + 12 + ……. + (5k – 3) + (5k + 2)
= S(k) + (5k + 2)
= \(\frac{k(5 k-1)}{2}\) + (5k + 2)
= \(\frac{5 k^{2}-k+2(5 k+2)}{2}\)
= \(\frac{1}{2}\) [5k2 + 9k + 4]
= \(\frac{1}{2}\) (k + 1) (5k + 4)
= \(\frac{1}{2}\) (k + 1) [5(k + 1) – 1]
∴ p(k + 1) is true
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N.
(i.e.,) 2 + 7 + 12 + …… + (5n – 3) = \(\frac{n(5 n-1)}{2}\)

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 8.
\(\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\frac{2 n+1}{n^{2}}\right)\) = (n + 1)2
Solution:
Let p(n) be the statement:
\(\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\frac{2 n+1}{n^{2}}\right)\) = (n + 1)2
and let S(n) be the product on the LHS
since S(1) = 1 + 3 = 4 = (1 + 1)2 = 4
∴ P(a) 4 time for n = 1
Assume that p(n) is true for n = k
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q8
= (k + 1)2 + 2k + 3
= k2 + 2k + 1 + 2k + 3
= k2 + 4k + 4
= (k + 2)2
= (k + 1 + 1)2
∴ P(n) is true for n = k + 1
By the principle of Mathematical Induction,
p(n) is true & n ∈ N

Question 9.
(2n + 7) < (n + 3)2
Solution:
Let p (n) be the statement
When n = 1, 9 < 16
∴ p(n) is true for n = 1
Assume p (n) is true for n = k
(2k + 7) < (k + 3)2
We show that p(n) is true for n = k + 1
2(k + 1) + 7 = 2k + 7 + 2
< (k + 3)2 + 2
< k2 + 6k + 9 + 2 + 2k + 5 – 2k – 5
< (k + 4)2 – (2k + 5)
< (k + 4)2
< (k + 1 + 3)2
∴ p(n) is true for n = k + 1
By the principle of Mathematical Induction
p(n) is true ∀ n ∈ N

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 10.
12 + 22 + …… + n2 > \(\frac{n^{3}}{3}\)
Solution:
Let P(n) by the statement
when n = 1, 1 > \(\frac{1}{3}\)
∴ p(n) is true for n = 1
Assume p (n) is true for n = k
12 + 22 + …… + k2 > \(\frac{k^{3}}{3}\)
We show that p(n) is true for n = k + 1
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q10
∴ p(n) is true for n = k + 1
By the principle of Mathematical Induction,
p(n) is true ∀ n ∈ N

Question 11.
4n – 3n – 1 is divisible by 9.
Solution:
Let p(n) be the statement:
4n – 3n – 1 is divisible by 9
Since 41 – 3(1) – 1 = 0 is divisible by 9.
The statement is true for n = 1
Assume that p(n) is true for n = k
(i.e) 4k – 3k – 1 is divisible by 9
Then 4k – 3k – 1 = 9t, for some t ∈ N ……..(1)
Show that the statement p(n) is true for n = k + 1
(i.e.,) we show that S(k + 1) = 4k+1 – 3(k+1) – 1 is divisible by 9
From (1), we have
4k = 9t + 3k + 1
∴ S(k + 1) = 4 . 4k – 3(k + 1) – 1
= 4(9t + 3k + 1) – 3k – 3 – 1
= 4(9t) + 9k
= 9[4t + k]
Hence s(k + 1) is divisible by 9
Since 4t + k is an integer
∴ 4k+1 – 3(k+1) – 1 is divisible by 9
∴ The statement is true for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ k
(i.e.,) 4n – 3n – 1 is divisible by 9

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 12.
3 . 52n+1 + 23n+1 is divisible by 17.
Solution:
Let p(n) be the statement:
3. 52n+1 + 23n+1 is divisible by 17
Since 3 . 52(1)+1 + 23(1)+1
= 3 . 53 + 24
= 3(125) + 16
= 375 + 16
= 391
= 17(23) is divisible by 17
∴ The statement is true for n = 1
Assume that the statement is true for n = k
(i.e) 3 . 52k+1 + 23k+1 is divisible by 17
Then 3 . 52k+1 + 23k+1 = 17t, for some t ∈ N ……..(1)
Show that the statement p(n) is true for n = k + 1
(i.e.,) We have to show that
\(\text { 3. } 5^{2(k+1)+1}+2^{3(k+1)+1}\) is divisible by 17
From (1) we have
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q12
Here 25t + 23k+1 is an integer
∴ \(\text { 3. } 5^{2(k+1)+1}+2^{3(k+1)+1}\) is divisible by 17
∴ The statement is true for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
(i.e.,) 3 . 52n+1 + 23n+1 is divisible by 17.

Question 13.
1.2.3 + 2.3.4 + 3.4.5 + ……. upto n terms = \(\frac{n(n+1)(n+2)(n+3)}{4}\)
Solution:
The nth term of the given series is (n) (n + 1) (n + 2)
Let p(n) be the statement:
1.2.3 + 2.3.4 + 3.4.5 +……. + (n) (n+1) (n+2) = \(\frac{n(n+1)(n+2)(n+3)}{4}\)
and S(n) be the sum on the L.H.S.
∵ S(1) = 1.2.3 = \(\frac{(1)(1+1)(1+2)(1+3)}{4}\) = 1.2.3
∴ p(1) is true
Assume that the statement p(n) is true for n = k
(i.e) S(k) = 1.2.3 + 2.3.4 + 3.4.5 + ……. + k(k + 1) (k + 2) = \(\frac{k(k+1)(k+2)(k+3)}{4}\)
We show that the statement is true for n = k + 1
(i.e) We show that S(k + 1) = \(\frac{(k+1)(k+2)(k+3)(k+4)}{4}\)
We observe that
S(k + 1) = 1.2.3 + 2.3.4 + …… + k(k + 1) (k + 2) + (k + 1) (k + 2) (k + 3)
= S(k) + (k + 1) (k + 2) (k + 3)
= \(\frac{k(k+1)(k+2)(k+3)}{4}\) + (k + 1)(k + 2)(k + 3)
= (k + 1)(k + 2)(k + 3) \(\left(\frac{k}{4}+1\right)\)
= \(\frac{(k+1)(k+2)(k+3)(k+4)}{4}\)
∴ The statement holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N
(i.e.,) 1.2.3 + 2.3.4 + 3.4.5 + ……. + (n)(n + 1)(n + 2) = \(\frac{n(n+1)(n+2)(n+3)}{4}\)

Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a)

Question 14.
\(\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}\) + …. up to n terms = \(\frac{n}{24}\) [2n2 + 9n + 13]
Solution:
The nth term of the given series is \(\frac{1^{3}+2^{3}+3^{3}+\ldots .+n^{3}}{1+3+5+\ldots+(2 n-1)}\)
Let p(n) be the statement :
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q14
and let S(n) be the sum on the L.H.S.
∵ S(1) = \(\frac{1^{3}}{1}=\frac{1}{24}(2+9+13)=1=\frac{1^{3}}{1}\)
∴ p(1) is true
Assume that p(k) is true
(i.e.,) S(k) = \(\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\ldots+\frac{1^{3}+2^{3}+\ldots \pm k^{3}}{1+3+\ldots+(2 k-1)}\) = \(\frac{k}{24}\) [2k2 + 9k + 13]
We show that p(k + 1) is true
(i.e,) we show that
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q14.1
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q14.2
∴ The statement holds for n = k + 1
∴ By the principle of mathematical induction,
p(n) is true for all n
(i.e.,) \(\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\ldots+\frac{1^{3}+2^{3}+\ldots \ldots+n^{3}}{1+3+\ldots+(2 n-1)}\) = \(\frac{n}{24}\) [2n2 + 9n + 13]

Question 15.
12 + (12 + 22) + (12 + 22 + 32) + ……. up to n terms = \(\frac{n(n+1)^{2}(n+2)}{12}\)
Solution:
The nth term of the given series is (12 + 22 + 32 + …… + n2)
Let p(n) be the statement:
12 + (12 + 22) + (12 + 22 + 32) + ……. + (12 + 22 + …… + n2) = \(\frac{\mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)}{12}\)
and the sum on the LH.S. is denoted by S(n).
Since S(1) = 12 = \(\frac{1(1+1)^{2}(1+2)}{12}\) = 1 = 12
∴ p(1) is true.
Assume that the statement is true for n = k
(i.e.,) S(k) = 12 + (12 + 22) + ……. + (12 + 22 + ……. + k2)
= \(\frac{k(k+1)^{2}(k+2)}{12}\)
We show that S(k + 1) = \(\frac{(k+1)(k+2)^{2}(k+3)}{12}\)
We observe that
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q15
Inter 1st Year Maths 1A Mathematical Induction Solutions Ex 2(a) Q15.1
∴ The statement holds for n = k + 1.
∴ By the principle of mathematical induction,
p(n) is true for all n ∈ N.
(i.e.,) 12 + (12 + 22) + (12 + 22 + 32) + …….. (12 + 22 + ………. + n2) = \(\frac{n(n+1)^{2}(n+2)}{12}\)

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Functions Solutions Exercise 1(c) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Functions Solutions Exercise 1(c)

I.

Question 1.
Find the domains of the following real-valued functions.
(i) f(x) = \(\frac{1}{\left(x^{2}-1\right)(x+3)}\)
Solution:
f(x) = \(\frac{1}{\left(x^{2}-1\right)(x+3)}\) ∈ R
⇔ (x2 – 1) (x + 3) ≠ 0
⇔ (x + 1) (x – 1) (x + 3) ≠ 0
⇔ x ≠ -1, 1, -3
∴ Domain of f is R – {-1, 1, -3}

(ii) f(x) = \(\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)}\)
⇔ (x – 1) (x – 2) (x – 3) ≠ 0
⇔ x ≠ 1, x ≠ 2, x ≠ 3
∴ Domain of f is R – {1, 2, 3}

(iii) f(x) = \(\frac{1}{\log (2-x)}\)
Solution:
f(x) = \(\frac{1}{\log (2-x)}\)
⇔ log (2 – x) ≠ 0 and 2 – x > 0
⇔ (2 – x) ≠ 1 and 2 > x
⇔ x ≠ 1 and x < 2
x ∈ (-∞, 1) ∪ (1, 2) (or) x ∈ (-∞, 2) – {1}
∴ Domain of f is {(-∞, 2) – {1}}

(iv) f(x) = |x – 3|
Solution:
f(x) = |x – 3| ∈ R
⇔ x ∈ R
∴ The domain of f is R

(v) f(x) = \(\sqrt{4 x-x^{2}}\)
Solution:
f(x) = \(\sqrt{4 x-x^{2}}\) ∈ R
⇔ 4x – x2 ≥ 0
⇔ x(4 – x) ≥ 0
⇔ x ∈ [0, 4]
∴ Domain of f is [0, 4]

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

(vi) f(x) = \(\frac{1}{\sqrt{1-x^{2}}}\)
Solution:
f(x) = \(\frac{1}{\sqrt{1-x^{2}}}\) ∈ R
⇔ 1 – x2 > 0
⇔ (1 + x) (1 – x) > 0
⇔ x ∈ (-1, 1)
∴ Domain of f is {x/x ∈ (-1, 1)}

(vii) f(x) = \(\frac{3^{x}}{x+1}\)
Solution:
f(x) = \(\frac{3^{x}}{x+1}\) ∈ R
⇔ 3x ∈ R, ∀ x ∈ R and x + 1 ≠ 0
⇔ x ≠ -1
∴ Domain of f is R – {-1}

(viii) f(x) = \(\sqrt{x^{2}-25}\)
Solution:
f(x) = \(\sqrt{x^{2}-25}\) ∈ R
⇔ x2 – 25 ≥ 0
⇔ (x + 5) (x – 5) ≥ 0
⇔ x ∈ (-∞, -5] ∪ [5, ∞)
⇔ x ∈ R – (-5, 5)
∴ Domain of f is R – (- 5, 5)

(ix) f(x) = \(\sqrt{x-[x]}\)
Solution:
f(x) = \(\sqrt{x-[x]}\) ∈ R
⇔ x – [x] ≥ 0
⇔ x ≥ [x]
⇔ x ∈ R
∴ Domain of f is R.

(x) f(x) = \(\sqrt{[x]-x}\)
Solution:
f(x) = \(\sqrt{[x]-x}\) ∈ R
⇔ [x] – x ≥ 0
⇔ [x] ≥ x
⇔ x ≤ [x]
⇔ x ∈ Z
∴ The domain of f is z (Where z denotes a set of integers)

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

Question 2.
Find the ranges of the following real-valued functions.
(i) log|4 – x2|
Solution:
Let y = f(x) = log|4 – x2|
f(x) ∈ R
⇔ 4 – x2 ≠ 0
⇔ x ≠ ±2
∵ y = log|4 – x2|
⇒ |4 – x2| = ey
∵ ey > 0 ∀ y ∈ R
∴ The range of f is R.

(ii) \(\sqrt{[x]-x}\)
Solution:
Let y = f(x) = \(\sqrt{[x]-x}\)
f(x) ∈ R
⇔ [x] – x ≥ 0
⇔ x ≤ [x]
⇔ x ∈ z
∴ Domain of f is z. Then range of f is {0}

(iii) \(\frac{\sin \pi[x]}{1+[x]^{2}}\)
Solution:
Let f(x) = \(\frac{\sin \pi[x]}{1+[x]^{2}}\) ∈ R
⇔ x ∈ R
∴ The domain of f is R
For x ∈ R, [x] is an integer,
sin π[x] = 0, ∀ x ∈ R [∵ sin nπ = 0, ∀ n ∈ z]
∴ Range of f is {0}

(iv) \(\frac{x^{2}-4}{x-2}\)
Solution:
Let y = f(x) = \(\frac{x^{2}-4}{x-2}\) ∈ R
⇔ y = \(\frac{(x+2)(x-2)}{x-2}\)
⇔ x ≠ 2
∴ The domain of f is R – {2}
Then y = x + 2, [∵ x ≠ 2 ⇒ y ≠ 4]
Then its range R – {4}

(v) \(\sqrt{9+x^{2}}\)
Solution:
Let y = f(x) = \(\sqrt{9+x^{2}}\) ∈ R
The domain of f is R
When x = 0, f(0) = √9 = 3
For all values of x ∈ R – {0}, f(x) > 3
∴ The range of f is [3, ∞)

Question 3.
If f and g are real-valued functions defined by f(x) = 2x – 1 and g(x) = x2 then find
(i) (3f – 2g)(x)
(ii) (fg) (x)
(iii) \(\left(\frac{\sqrt{f}}{g}\right)(x)\)
(iv) (f + g + 2) (x)
Solution:
(i) (3f – 2g)(x)
f(x) = 2x – 1, g(x) = x2
(3f – 2g) (x) = 3f(x) – 2g(x)
= 3(2x – 1) – 2x2
= -2x2 + 6x – 3

(ii) (fg) (x)
= f(x) . g(x)
= (2x – 1) (x2)
= 2x3 – x2

(iii) \(\left(\frac{\sqrt{f}}{g}\right)(x)\)
\(\frac{\sqrt{f(x)}}{g(x)}=\frac{\sqrt{2 x-1}}{x^{2}}\)

(iv) (f + g + 2) (x)
= f(x) + g(x) + 2
= (2x – 1) + x2 + 2
= x2 + 2x + 1
= (x + 1)2

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

Question 4.
If f = {(1, 2), (2, -3), (3, -1)} then find
(i) 2f
(ii) 2 + f
(iii) f2
(iv) √f
Solution:
Given f = {(1, 2), (2, -3), (3, -1)}
(i) 2f = {(1, 2 × 2), (2, 2(-3), (3, 2(-1))}
= {(1, 4), (2, -6), (3, -2)}

(ii) 2 + f = {(1, 2 + 2), (2, 2 + (-3)), (3, 2 + (-1)}
= {(1, 4), (2, -1), (3, 1)}

(iii) f2 = {(1, 22), (2, (-3)2), (3, (-1)2)}
= {(1, 4), (2, 9), (3, 1)}

(iv) √f = {(1, √2)}
∵ √-3 and √-1 are not real

II.

Question 1.
Find the domains of the following real-valued functions.
(i) f(x) = \(\sqrt{x^{2}-3 x+2}\)
Solution:
f(x) = \(\sqrt{x^{2}-3 x+2}\) ∈ R
⇔ x2 – 3x + 2 ≥ 0
⇔ (x- 1) (x – 2) ≥ 0
⇔ x ∈ (-∞, 1 ] ∪ [2, ∞]
∴ The domain of f is R – (1, 2)

(ii) f(x) = log(x2 – 4x + 3)
Solution:
f(x) = log(x2 – 4x + 3) ∈ R
⇔ x2 – 4x + 3 > 0
⇔ (x – 1) (x – 3) > 0
⇔ x ∈ (-∞, 1) ∪ (3, ∞)
∴ Domain of f is R – [1, 3]

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

(iii) f(x) = \(\frac{\sqrt{2+x}+\sqrt{2-x}}{x}\)
Solution:
f(x) = \(\frac{\sqrt{2+x}+\sqrt{2-x}}{x}\) ∈ R
⇔ 2 + x ≥ 0, 2 – x ≥ 0, x ≠ 0
⇔ x ≥ -2, x ≤ 2, x ≠ 0
⇔ -2 ≤ x ≤ 2, x ≠ 0
⇔ x ∈ [-2, 2] – {0}
Domain of f is [-2, 2] – {0}

(iv) f(x) = \(\frac{1}{\sqrt[3]{(x-2)} \log _{(4-x)} 10}\)
Solution:
f(x) = \(\frac{1}{\sqrt[3]{(x-2)} \log _{(4-x)} 10}\) ∈ R
⇔ 4 – x > 0, 4 – x ≠ 1 and x – 2 ≠ 0
⇔ x < 4, x ≠ 3, x ≠ 2
∴ Domain of f is (-∞, 4) – {2, 3}

(v) f(x) = \(\sqrt{\frac{4-x^{2}}{[x]+2}}\)
Solution:
f(x) = \(\sqrt{\frac{4-x^{2}}{[x]+2}}\) ∈ R
Case (i) 4 – x2 ≥ 0 and [x] + 2 > 0 (or) Case (ii) 4 – x2 ≤ 0 and [x] + 2 < 0
Case (i): 4 – x2 ≥ 0 and [x] + 2 > 0
⇔ (2 – x) (2 + x) ≥ 0 and [x] > -2
⇔ x ∈ [-2, 2] and x ∈ [-1, ∞]
⇔ x ∈ [-1, 2] ……..(1)
Case (ii): 4 – x2 ≤ 0 and [x] + 2 < 0
⇔ (2 + x) (2 – x) ≤ 0 and [x] < – 2
⇔ x ∈ (-∞, -2] ∪ [2, ∞] and x ∈ (-∞, -2)
⇔ x ∈ (-∞, -2) ……(2)
from (1) and (2),
Domain of f is (-∞, -2) ∪ [-1, 2]

(vi) f(x) = \(\sqrt{\log _{0.3}\left(x-x^{2}\right)}\)
Solution:
f(x) = \(\sqrt{\log _{0.3}\left(x-x^{2}\right)}\) ∈ R
Then log0.3(x – x2) ≥ 0
⇒ x – x2 ≤ (0.3)0
⇒ x – x2 ≤ 1
⇒ -x2 + x – 1 ≤ 0
⇒ x2 – x + 1 ≥ 0
This is true for all x ∈ R ……..(1)
and x – x2 ≥ 0
⇒ x2 – x ≤ 0
⇒ x(x – 1) ≤ 0
⇒ x ∈ (0, 1) …….(2)
From (1) and (2)
Domain of f is R ^ (0, 1) = (0, 1)
∴ The domain of f is (0, 1)

(vii) f(x) = \(\frac{1}{x+|x|}\)
Solution:
f(x) = \(\frac{1}{x+|x|}\) ∈ R
⇔ x + |x| ≠ 0
⇔ x ∈ (0, ∞)
∵ |x| = x, if x ≥ 0
|x| = -x, if x < 0
∴ The domain of f is (0, ∞)

Inter 1st Year Maths 1A Functions Solutions Ex 1(c)

Question 2.
Prove that the real valued function f(x) = \(\frac{x}{e^{x}-1}+\frac{x}{2}+1\) is an even function on R \ {0}.
Solution:
f(x) ∈ R, ex – 1 ≠ 0
⇒ ex ≠ 1
⇒ x ≠ 0
Inter 1st Year Maths 1A Functions Solutions Ex 1(c) II Q2
⇒ f(x) is an even function on R – {0}

Question 3.
Find the domain and range of the following functions.
(i) f(x) = \(\frac{\tan \pi[x]}{1+\sin \pi[x]+\left[x^{2}\right]}\)
Solution:
f(x) = \(\frac{\tan \pi[x]}{1+\sin \pi[x]+\left[x^{2}\right]}\) ∈ R
⇔ x ∈ R, since [x] is an integer tan π[x] and sin π[x] each is zero for ∀ x ∈ R and f(x) ∈ R
Domain of f is R
Its range = {0}

(ii) f(x) = \(\frac{x}{2-3 x}\)
Solution:
Inter 1st Year Maths 1A Functions Solutions Ex 1(c) II Q3(ii)

(iii) f(x) = |x| + |1 + x|
Solution:
f(x) = |x| + |1 + x| ∈ R
⇔ x ∈ R
∴ Domain of f is R
∵ |x| = x, if x ≥ 0
= -x, if x < 0
|1 + x| = 1 + x, if x ≥ -1
= -(1 + x) if x < -1
For x = 0, f(0) = |0| + |1 + 0| = 1
x = 1, f(1) = |1| + |1 + 1| = 1 + 2 = 3
x = 2, f(2) = |2| + |1 + 2| = 2 + 3 = 5
x = -2, f(-2) = |-2| + |1 + (-2)| = 2 + 1 = 3
x = -1, f(-1) = |-1| + |1 +(-1)| = 1 + 0 = 1
∴ The range of f is [1, ∞]

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Functions Solutions Exercise 1(b) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1A Functions Solutions Exercise 1(b)

I.

Question 1.
If f(x) = ex and g(x) = logex, then show that f o g = g o f and find f-1 and g-1.
Solution:
Given f(x) = ex and g(x) = logex
Now (f o g) (x) = f(g(x))
= f(logex) [∵ g(x) = \(\log _{e} x\)]
= \(e^{\left(\log _{e} x\right)}\)
= x
∴ (fog) (x) = x ………(1)
and (g o f) (x) = g(f(x))
= g(ex) [∵ f(x) = ex]
= loge (ex) [∵ g(x) = logex]
= x loge (e)
= x(1)
= x
∴ (g o f) (x) = x …….(2)
From (1) and (2)
f o g = g o f
Given f(x) = ex
Let y = f(x) = ex ⇒ x = f-1(y)
and y = ex ⇒ x = loge (y)
∴ f-1(y) = loge (y) ⇒ f-1(x) = loge (x)
Let y = g(x) = loge (x)
∵ y = g(x) ⇒ x = g-1(y)
∵ y = loge (x) ⇒ x = ey
∴ g-1(y) = ey ⇒ g-1(x) = ex
∴ f-1(x) = loge (x) and g-1(x) = ex

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 2.
If f(y) = \(\frac{y}{\sqrt{1-y^{2}}}\), g(y) = \(\frac{y}{\sqrt{1+y^{2}}}\) then show that (fog) (y) = y
Solution:
f(y) = \(\frac{y}{\sqrt{1-y^{2}}}\) and g(y) = \(\frac{y}{\sqrt{1+y^{2}}}\)
Now, (fog) (y) = f(g(y))
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) I Q2
∴ (fog) (y) = y

Question 3.
If f : R → R, g : R → R are defined by f(x) = 2x2 + 3 and g(x) = 3x – 2, then find
(i) (fog)(x)
(ii) (gof) (x)
(iii) (fof) (0)
(iv) go(fof) (3)
Solution:
f : R → R, g : R → R and f(x) = 2x2 + 3; g(x) = 3x – 2
(i) (f o g) (x) = f(g(x))
= f(3x – 2) [∵ g(x) = 3x – 2]
= 2(3x- 2)2 + 3 [∵ f(x) = 2x2 + 3]
= 2(9x2 – 12x + 4) + 3
= 18x2 – 24x + 8 + 3
= 18x2 – 24x + 11

(ii) (gof) (x) = g(f(x))
= g(2x2 + 3) [∵ f(x) = 2x2 + 3]
= 3(2x2 + 3) – 2 [∵ g(x) = 3x – 2]
= 6x2 + 9 – 2
= 6x2 + 7

(iii) (fof) (0) = f(f(0))
= f(2(0) + 3) [∵ f(x) = 2x2 + 3]
= f(3)
= 2(3)2 + 3
= 18 + 3
= 21

(iv) g o (f o f) (3)
= g o (f (f(3)))
= g o (f (2(3)2 + 3)) [∵ f(x) = 2x2 + 3]
= g o (f(21))
= g(f(21))
= g(2(21)2 + 3)
= g(885)
= 3(885) – 2 [∵ g(x) = 3x – 2]
= 2653

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 4.
If f : R → R, g : R → R are defined by f(x) = 3x – 1, g(x) = x2 + 1, then find
(i) (f o f) (x2 + 1)
(ii) f o g (2)
(iii) g o f (2a – 3)
Solution:
f : R → R, g : R → R and f(x) = 3x – 1 ; g(x) = x2 + 1
(i) (f o f) (x2 + 1)
= f(f(x2 + 1))
= f[3(x2 + 1) – 1] [∵ f(x) = 3x – 1]
= f(3x2 + 2)
= 3(3x2 + 2) – 1
= 9x2 + 5

(ii) (f o g) (2)
= f(g(2))
= f(22 + 1) [∵ g(x) = x2 + 1]
= f(5)
= 3(5) – 1
= 14 [∵ f(x) = 3x – 1]

(iii) (g o f) (2a – 3)
= g(f(2a – 3))
= g[3(2a – 3) – 1] [∵ f(x) = 3x – 1]
= g(6a – 10)
= (6a – 10)2 + 1 [∵ g(x) = x2 + 1]
= 36a2 – 120a + 100 + 1
= 36a2 – 120a + 101

Question 5.
If f(x) = \(\frac{1}{x}\), g(x) = √x for all x ∈ (0, ∞) then find (g o f) (x).
Solution:
f(x) = \(\frac{1}{x}\), g(x) = √x, ∀ x ∈ (0, ∞)
(g o f) (x) = g(f(x))
= g(\(\frac{1}{x}\)) [∵ f(x) = \(\frac{1}{x}\)]
= \(\sqrt{\frac{1}{x}}\)
= \(\frac{1}{\sqrt{x}}\) [∵ g(x) = √x]
∴ (gof) (x) = \(\frac{1}{\sqrt{x}}\)

Question 6.
f(x) = 2x – 1, g(x) = \(\frac{x+1}{2}\) for all x ∈ R, find (g o f) (x).
Solution:
f(x) = 2x – 1, g(x) = \(\frac{x+1}{2}\) ∀ x ∈ R
(g o f) (x) = g(f(x))
= g(2x – 1) [∵ f(x) = 2x – 1]
= \(\frac{(2 x-1)+1}{2}\)
= x [∵ g(x) = \(\frac{x+1}{2}\)]
∴ (g o f) (x) = x

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 7.
If f(x) = 2, g(x) = x2, h(x) = 2x for all x ∈ R, then find (f o (g o h)) (x).
Solution:
f(x) = 2, g(x) = x2, h(x) = 2x, ∀ x ∈ R
[f o (g o h) (x)]
= [f o g (h(x))]
= f o g (2x) [∵ h(x) = 2x]
= f[g(2x)]
= f((2x)2) [∵ g(x) = x2]
= f(4x2) = 2 [∵ f(x) = 2]
∴ [f o (g o h) (x)] = 2

Question 8.
Find the inverse of the following functions.
(i) a, b ∈ R, f : R → R defined by f(x) = ax + b, (a ≠ 0).
Solution:
a, b ∈ R, f : R → R and f(x) = ax + b, a ≠ 0
Let y = f(x) = ax + b
⇒ y = f(x)
⇒ x = f-1(y) ……..(i)
and y = ax + b
⇒ x = \(\frac{y-b}{a}\) ……..(ii)
From (i) and (ii)
f-1(y) = \(\frac{y-b}{a}\)
⇒ f-1(x) = \(\frac{x-b}{a}\)

(ii) f : R → (0, ∞) defined by f(x) = 5x
Solution:
f : R → (0, ∞) and f(x) = 5x
Let y = f (x) = 5x
y = f(x) ⇒ x = f-1(y) ……(i)
and y = 5x ⇒ log5 (y) = x ……..(ii)
From (i) and (ii)
f-1(y) = log5(y) ⇒ f-1(x) = log5 (x)

(iii) f : (0, ∞) → R defined by f(x) = log2 (x).
Solution:
f : (0, ∞) → R and f(x) = log2 (x)
Let y = f(x) = log2 (x)
∵ y = f(x) ⇒ x = f-1(y) ……..(i)
and y = log2(x) ⇒ x = 2y
From (i) and (ii)
f-1(y) = 2y ⇒ f-1(x) = 2x

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 9.
If f(x) = 1 + x + x2 + …… for |x| < 1 then show that f-1(x) = \(\frac{x-1}{x}\)
Solution:
f(x) = 1 + x + x2 + ……..
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) I Q9

Question 10.
If f : [1, ∞) ⇒ [1, ∞) defined by f(x) = \(2^{x(x-1)}\) then find f-1(x).
Solution:
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) I Q10
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) I Q10.1

II.

Question 1.
If f(x) = \(\frac{x-1}{x+1}\), x ≠ ±1, then verify (f o f-1) (x) = x.
Solution:
Given f(x) = \(\frac{x-1}{x+1}\), x ≠ ±1
Let y = f(x) = \(\frac{x-1}{x+1}\)
∵ y = f(x) ⇒ x = f-1(y) ……(i)
and y = \(\frac{x-1}{x+1}\)
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) II Q1

Question 2.
If A = {1, 2, 3}, B = {α, β, γ}, C = {p, q, r} and f : A → B, g : B → C are defined by f = {(1, α), (2, γ), (3, β)}, g = {(α, q), (β, r), (γ, p)}, then show that f and g are bijective functions and (gof)-1 = f-1 o g-1.
Solution:
A = {1, 2, 3}, B = {α, β, γ},
f : A → B and f = {(1, α), (2, γ), (3, β)}
⇒ f(1) = α, f(2) = γ, f(3) = β
∵ Distinct elements of A have distinct f – images in B, f: A → B is an injective function.
Range of f = {α, γ, β} = B(co-domain)
∴ f : A → B is a surjective function.
Hence f : A → B is a bijective function.
B = {α, β, γ}, C = {p, q, r}, g : B → C and g : {(α, q), (β, r), (γ, p)}
⇒ g(α) = q, g(β) = r, g(γ) = p
∴ Distinct elements of B have distinct g – images in C, g : B → C is an injective function.
Range of g = {q, r, p} = C, (co-domain)
∴ g : B → C is a surjective function
Hence g : B → C is a bijective function
Now f = {(1, α), (2, γ), (3, β)}
g = {(α, q), (β, r), (γ, p)}
g o f = {(1, q), (2, p), (3, r)}
∴ (g o f)-1 = {(q, 1), (r, 3), (p, 2)} ………(1)
g-1 = {(q, α), (r, β), (p, γ)}
f-1 = {(α, 1), (γ, 2),(β, 3)}
Now f-1 o g-1 = {(q, 1), (r, 3), (p, 2)} …….(2)
From eq’s (1) and (2)
(gof)-1 = f-1 o g-1

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 3.
If f : R → R, g : R → R defined by f(x) = 3x – 2, g(x) = x2 + 1, then find
(i) (g o f-1) (2)
(ii) (g o f)(x – 1)
Solution:
f : R → R, g : R → R and f(x) = 3x – 2
f is a bijective function ⇒ its inverse exists
Let y = f(x) = 3x – 2
∵ y = f(x) ⇒ x = f-1(y) …….(i)
and y = 3x – 2
⇒ x = \(\frac{y+2}{3}\) ……..(ii)
From (i) and (ii)
f-1(y) = \(\frac{y+2}{3}\)
⇒ f-1(x) = \(\frac{x+2}{3}\)
Now (gof-1) (2)
= g(f-1(2))
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) II Q3
∴ (g o f-1) (2) = \(\frac{25}{9}\)

(ii) (g o f) (x -1)
= g(f(x – 1))
= g(3(x – 1) – 2) [∵ f(x) = 3x – 2]
= g(3x – 5)
= (3x – 5)2 + 1 [∵ g(x) = x2 + 1]
= 9x2 – 30x + 26
∴ (g o f) (x – 1) = 9x2 – 30x + 26

Question 4.
Let f = {(1, a), (2, c), (4, d), (3, b)} and g-1 = {(2, a), (4, b), (1, c), (3, d)} then show that (gof)-1 = f-1 o g-1
Solution:
f = {(1, a), (2, c), (4, d), (3, b)}
∴ f-1 = {(a, 1), (c, 2), (d, 4), (b, 3)}
g-1 = {(2, a), (4, b), (1, c), (3, d)}
∴ g = {(a, 2), (b, 4), (c, 1), (d, 3)}
(g o f) = {(1, 2), (2, 1), (4, 3), (3, 4)}
∴ (gof)-1 = {(2, 1), (1, 2), (3, 4), (4, 3)} ……….(1)
f-1 o g-1 = {(2, 1), (4, 3), (1, 2), (3, 4)} ……..(2)
From eq’s (1) and (2), we observe (gof)-1 = f-1 o g-1

Question 5.
Let f : R → R, g : R → R be defined by f(x) = 2x – 3, g(x) = x3 + 5 then find (f o g)-1 (x).
Solution:
f : R → R, g : R → R and f(x) = 2x – 3 and g(x) = x3 + 5
Now (fog) (x) = f(g(x))
= f(x3 + 5) [∵ g(x) = x2 + 5]
= 2(x3 + 5) – 3 [∵ f(x) = 2x – 3]
= 2x3 + 7
∴ (f o g) (x) = 2x3 + 7
Let y = (f o g) (x) = 2x3 + 7
∵ y = (fog)(x)
⇒ x = (fog)-1 (y) …….(1)
and y = 2x3 + 7
⇒ x3 = \(\frac{y-7}{2}\)
⇒ x = \(\left(\frac{y-7}{2}\right)^{\frac{1}{3}}\) …..(2)
From eq’s (1) and (2),
(f o g)-1 (y) = \(\left(\frac{y-7}{2}\right)^{\frac{1}{3}}\)
∴ (f o g)-1 (x) = \(\left(\frac{x-7}{2}\right)^{\frac{1}{3}}\)

Inter 1st Year Maths 1A Functions Solutions Ex 1(b)

Question 6.
Let f(x) = x2, g(x) = 2x. Then solve the equation (f o g) (x) = (g o f) (x)
Solution:
Given f(x) = x2 and g(x) = 2x
Now (f o g) (x) = f(g(x))
= f(2x) [∵ g(x) = 2x]
= (2x)2
= 22x [∵ f(x) = x2]
∴ (f o g) (x) = 22x ……(1)
and (g o f) (x) = g(f(x))
= g(x2) [∵ f(x) = x2]
= \((2)^{x^{2}}\) [∵ g(x) = 2x]
∴ (g o f) (x) = \((2)^{x^{2}}\)
∵ (f o g) (x) = (g o f) (x)
⇒ 22x = \((2)^{x^{2}}\)
⇒ 2x = x2
⇒ x2 – 2x = 0
⇒ x(x – 2) = 0
⇒ x = 0, x = 2
∴ x = 0, 2

Question 7.
If f(x) = \(\frac{x+1}{x-1}\), (x ≠ ±1) then find (fofof) (x) and (fofofof) (x).
Solution:
f(x) = \(\frac{x+1}{x-1}\), (x ≠ ±1)
(i) (fofof) (x) = (fof) [f(x)]
= (fof) \(\left(\frac{x+1}{x-1}\right)\) [∵ f(x) = \(\left(\frac{x+1}{x-1}\right)\)]
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) II Q7

(ii) (fofofof) (x) = f[(f o f o f) (x)]
= f [f(x)] {from (1)}
Inter 1st Year Maths 1A Functions Solutions Ex 1(b) II Q7.1
In the above problem if a number of f is even its answer is x and if a number of f is odd its answer is f(x).

Inter 1st Year Maths 1A Products of Vectors Formulas

Products of Vectors Formulas

Use these Inter 1st Year Maths 1A Formulas PDF Chapter 5 Products of Vectors to solve questions creatively.

Intermediate 1st Year Maths 1A Products of Vectors Formulas

Scalar or Dot Product of Two Vectors:
The scalar or dot product of two non – zero vectors \(\bar{a}\) and \(\bar{b}\), denoted by \(\bar{a} \cdot \bar{b}\) is defined as \(\bar{a} \cdot \bar{b}=|\bar{a}||\bar{b}|\) cos \((\bar{a}, \bar{b})\). This is a scalar, either \(\bar{a}\) = 0 (or) \(\bar{b}\) = 0, then we define \(\bar{a} \cdot \bar{b}\) = 0. If we write \((\bar{a}, \bar{b})\) = 0, then \(\bar{a} \cdot \bar{b}=|\bar{a}||\bar{b}|\) cos θ, if a ≠ 0, b ≠ 0, since 0 ≤ (a, b) = θ ≤ 7 80°, we get

  • 0 ≤ θ < 90° ⇒ \(\bar{a}\). b > 0.
  • θ = 90° ⇒ \(\bar{a} \cdot \bar{b}\) = 0 and the vectors \(\bar{a}\) and \(\bar{b}\) are perpendicular.
  • 90° < θ ≤ 180° ⇒ \(\bar{a} \cdot \bar{b}\) < 0
  • \(\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a}\)
  • a̅ (b̅ + c̅) = a̅ .b̅ + a̅ .c̅
  • If a̅, b̅ are parallel, a̅.b̅ = ± |a̅ | |b̅ |.
  • If l, m ∈ R, (la̅).(mb̅) = lm(a̅. b̅)
  • Projection of b̅ on a̅ (or) length of the projection a̅ = \(\frac{|\bar{a} \cdot \bar{b}|}{|\bar{a}|}\)
  • Orthogonal projection of b̅ on a̅ = \(\frac{(\bar{a} \cdot \bar{b})_{\bar{a}}}{|\bar{a}|^{2}}\); a̅ ≠ 0
    or
    The projection vector b̅ on a̅ = \(\left(\frac{\bar{a} \cdot \bar{b}}{|\bar{a}|^{2}}\right)\) a̅ and it is magnitude = \(\frac{|\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}|}{|\overline{\mathrm{a}}|}\)
  • The component vector of b̅ along a̅ (or) parallel to a̅ is \(\left(\frac{\bar{a} \cdot \bar{b}}{|\bar{a}|^{2}}\right)\)a̅

Component vector of a̅ along b̅ = \(\frac{(\bar{a} \cdot \bar{b}) \bar{b}}{|\bar{b}|^{2}}\), component vector of a̅ perpendicular to b̅ = a̅ – \(\frac{(\bar{a} \cdot \bar{b}) \bar{b}}{|\bar{b}|^{2}}\)

Inter 1st Year Maths 1A Products of Vectors Formulas

Orthogonal unit vectors :
Ifi, j, k are orthogonal unit vector triad in a right handed system, then

  • i̅ .j̅ = j̅.k̅ = k̅.i̅ = 0
  • i̅ .i̅ = j̅.j̅ = k̅.k̅ = 1
  • If r is any vector, r̅ = (r̅.i̅)i̅ +(r̅.j̅)j̅ ≠ (r̅.k̅)k̅

Some identities :
If a̅, b̅, c̅ are three vectors, then

  • (a̅ + b̅)2 = |a̅|2 + |b̅|2 + 2(a̅ . b̅)
  • (a̅ – b̅)2 = |a̅|2 + |b̅|2 – 2(a̅.b̅)
  • (a̅ + b̅)2 + (a̅ – b̅)2 = 2(|a̅|2 + |b̅|2)
  • (a̅ + b̅)2 – (a̅ – b̅)2 = 4(a̅. b̅)
  • (a̅ + b̅). (a̅ – b̅) = |a̅|2 – |b̅|2
  • (a̅ + b̅ + c̅)2 = |a̅|2 + |b̅|2 + |c̅|2 + 2(a̅ . b̅) + 2(b̅ . c̅) + 2(c̅ .a̅)

→ If a̅ = a1 i̅ +a2j̅ + a3k̅ and b̅ = b1i̅ + b2j̅ + b3k̅, then
a̅.b̅ = a1b1 + a2b2 + a3b3
a̅ is perpendicular to b̅
⇔ a1b1 + a2b2 + a3b3 = 0

→ |a̅| = \(\), |b̅| = \(\)

→ If (a̅, b̅) = then cos θ = \(\frac{\bar{a} \cdot \bar{b}}{|\bar{a}||\bar{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{\sum a_{1}^{2}} \sqrt{\sum b_{1}^{2}}}\) and sin θ = \(\sqrt{\frac{\sum\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}}{\left(\sum a_{1}^{2}\right)\left(\sum b_{1}^{2}\right)}}\)

→ a̅ is parallel to b̅ ⇔ a1: b1 = a2 : b2 = a3: b3

→ a̅.a̅ >0; |a̅.b̅| < |a̅| |b̅|
|a̅ + b̅| ≤ |a̅| + |b̅|; |a̅ – b̅| ≤ |a̅| + |b̅| ;
|a̅ – b̅| ≥ |a̅| – |b̅|

Vector equations of a plane :

  • The equation of the plane, whose perpendicular distance from the origin is p and whose unit normal drawn from the origin towards the plane is h is n̂ is r̅.n̂ = p.
  • Equation of a plane passing through the origin and perpendicular to the unit vector n̅, is r̅.n̅ = 0
  • Vector equation of a plane passing through a point A with position vector a and perpendicular to a vector n̅ is (r – a̅). n̅ = 0.

Perpendicular distance from the origin to the plane (r̅ – a̅).h = 0 is a̅. n̅ . where ‘a̅’ is the position vector of A in the plane and ‘n̅’ is a unit vector perpendicular to the plane.

Angle between two planes :
If π1 and π22 be two planes and \(\bar{M}_{1}, \bar{M}_{2}\) are normals drawn to them, we define the angle between M1 and M2 as the angle between π1 and π2. If the angle between \(\) and \(\) is θ, the angle between the given planes θ = cos-1\(\left[\frac{\bar{M}_{1} \cdot \bar{M}_{2}}{\left|\bar{M}_{1}\right|\left|\bar{M}_{2}\right|}\right]\)

Work done by a constant force F:

  • If a constant force F̅ acting on a particle displaces it from a position ‘A’ to the position B, then the work done ‘W by this constant force T is the dot product of the vectors
    representing the force F̅ and displacement \(\overline{A B}\), i.e., W = F̅.\(\overline{A B}\).
  • If F is the resultant of the forces F̅1, F̅2, ……………….F̅n, then workdone in displacing the particle from A to B is
    \(\bar{W}=\bar{F}_{1} \cdot \overline{A B}+\bar{F}_{2} \cdot \overline{A B}+\ldots \ldots+F_{n} \cdot \overline{A B}\)

Cross Product or Vector Product of two vectors :
The vector product or cross product of two non-parallel non – zero vectors ‘a̅’ and ‘b̅’ is defined as a̅ × b̅ = |a̅||b̅| sin θ n̂, where ‘ n̂’ is a unit vector perpendicular to the plane containing ‘a̅’ and ‘b̅’ such that a̅, b̅ and ‘n̂’ form a vector triad in the right handed system and (a̅, b̅) = θ, this is a vector. If either of a̅, b̅ is a zero vector or ‘a̅’ is parallel to ‘b̅’, we define a̅ × b̅ = 0.

Some important results on vector product:

  • |a̅ × b̅| = |a̅||b̅|sinθ ≤ |a̅||b̅| ;
  • |a̅ × b̅| = |b̅ × a̅|
  • a̅ × b̅ = -(b̅ × a̅):
  • -a̅ × -b̅ = a̅ × b̅
  • (-a̅) × b̅ = a̅ × (-b̅) – (a̅ × b̅)
  • la̅ × mb̅ = lm(a̅ × b̅) ;
  • a̅ × (b̅ + c̅) = a̅ × b̅ + a̅ × c̅
  • a̅ ≠ 0, b̅ ≠ 0 and a̅ × b̅ = 0 ⇔ ‘a̅’ and ‘b̅’ are parallel vectors.
  • a̅, b̅ , c̅ are non-zero vectors and a̅ × c̅ = b̅ × c̅ ⇒ either a̅ = b̅ or a̅ – b̅ is parallel to c̅.

Vector product among i. i and k:
If i̅, j̅ and k̅ are orthogonal unit vectors triad in the right handed system then

  • i̅ × j̅ = j̅ × j = k̅ × k̅ = 0
  • i̅ × j̅ = k̅ =-j̅ × i̅ ; j̅ × k̅ = k̅ × j̅ = i̅ ; k̅ × i̅ = -i̅ × k̅ = j̅
  • If a̅ = a1 i̅ + a2 j + a3k ; b̅ = b1i̅ + b2 j̅ + b3k̅, then
    a̅ × b̅ = a2b3 – a3b2)i̅ + (a3b1 – a1b3)j̅ + (a1b2 – a2b1)k̅

This may be represented in the form of a determinants as a̅ × b̅ = \(\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|\)

  • Unit vectors perpendicular to both ‘a̅’and ‘b̅’ are ± \(\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}\)
  • If a̅ = a1i̅ + a2j̅ + a3k̅ ; b̅ = b1i̅ + b2 j̅ + b3k̅ and (a̅, b̅) = θ, then
    sin θ = \(\frac{\sqrt{\sum\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}}}{\sqrt{\sum a_{1}^{2}} \sqrt{\sum b_{1}^{2}}}\) cos θ = \(\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{\sum a_{1}^{2}} \sqrt{\sum b_{1}^{2}}}\)

Inter 1st Year Maths 1A Products of Vectors Formulas

Vector areas:

  • If \(\overline{A B}=\bar{c}\) and \(\overline{A C}=\bar{b}\) are two adjacent sides of a triangle ABC, then vector area of ΔABC = \(\frac{1}{2}\)(c̅ × b̅) and the area of the ΔABC = \(\frac{1}{2}\)|c̅ × b̅| $q. units.
  • If a̅, b̅, c̅ are the position vectors of A, B, C respectively then the vector area of
    ΔABC = \(\frac{1}{2}\)[(b̅ × c̅) + (c̅ × a̅) + (a̅ × b̅)]
    Area of ΔABC = \(\frac{1}{2}\)|(b̅ × c̅) + (c̅ × a̅) + (a̅ × b̅)|sq. units.
  • If \(\) and \(\) are the diagonals of a parallelogram ABCD, then the vector area of the parallelogram = \(\frac{1}{2}\)|a̅ × b̅| and area = \(\frac{1}{2}\)|a̅ × b̅|sq. units.
  • If AB = a̅ and AD = b̅ are two adjacent sides of a parallelogram ABCD, then its vector area = a̅ × b̅ and area = |a̅ × b̅| sq. units.
  • Vector area of the quadrilateral ABCD = \(\frac{1}{2}\)\((A C \times B D)\) and area of the quadrilateral ABCD = \(\frac{1}{2}\)\(|\overline{A C} \times \overline{B D}|\)sq. units.

Some useful formulas :

  • If a̅, b̅ are two non-zero and non-parallel vectors then
    (a̅ × b̅)2 = a2b2 – (a̅.b̅)2 = \(\left|\begin{array}{cc}
    a \cdot \bar{a} & \bar{a} \cdot \bar{b} \\
    \bar{a} \cdot b & b \cdot \bar{b}
    \end{array}\right|\)
  • For any vector a̅,(a̅ × i̅)2 + (a̅ × j̅)2 + (a̅ × k̅)2 = 2|a|2
  • If a̅, b̅, c̅ are the position vectors of the points A, B, C respectively, then the perpendicular distance from c to the line AB is \(\frac{|\overline{A C} \times \overline{A B}|}{|\overline{A B}|}=\frac{|(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})+(\bar{a} \times \bar{b})|}{|b-\bar{a}|}\)

Moment of a force :
Let 0 be the point of reference (origin) and \(\overline{o p}=\bar{r}\) be the position vector of a point p on the line of action of a force F̅. Then the moment of the force F about 0 is given by r̅ × F̅.

Scalar triple product:
Let a̅, b̅, c̅ he three vectors. We call (a̅ × b̅). c̅ the scalar product of a̅, b and c. This is a scalar (real number). It is written as [a̅ b̅ c̅]

  • If (a̅ × b̅). c̅ = 0, then one or more of the vectors a̅, b̅ and c̅ should be zero vectors. If a ≠ 0, b ≠ 0, c ≠ 0, then c is perpendicular to a̅ × b̅. Hence the vector c̅ lies on the plane determined by a̅ and b̅. Hence a̅, b̅ and c̅ are coplanar.
  • If in a scalar triple product, any two vectors are parallel (equal), then the scalar triple product is zero i.e., [a̅ a̅ b̅] = [a̅ b̅ b̅] = [c̅ b̅ c̅] = 0.
  • In a scalar triple product remains unaltered if the vectors are permutted cyclically i.e., [a̅ b̅ c̅] = [b̅ c̅ a̅] = [c̅ a̅ b̅].
    However [a̅ b̅ c̅] = -[b̅ a̅ c̅] = -[c̅ b̅ a̅] = -[a̅ c̅ b̅].
  • In a scalar triple product, the dot and cross are interchangeable i.e., a̅.b̅ × c̅ = a̅ × b̅.c̅

→ If i̅ , j̅ , k̅ are orthogonal unit vector triad in the right handed system, then

  • [i̅ j̅ k̅ ] = [j̅ k̅ i̅ ] = [k̅ i̅ j̅ ] = 1
  • [i̅ k̅ j̅ ] = [j̅ i̅ k̅ ] = [k̅ j̅ i̅ ] = -1
  • If a̅ = a1 i̅ + a2j̅ + a3 k̅ ; b̅ = b1i̅ + b2 j̅ + b3k̅ and c̅ = c1i̅ + c2 j̅ + c3k̅ then [a̅ b̅ c̅] = \(\left|\begin{array}{lll}
    a_{1} & a_{2} & a_{3} \\
    b_{1} & b_{2} & b_{3} \\
    c_{1} & c_{2} & c_{3}
    \end{array}\right|\)

Inter 1st Year Maths 1A Products of Vectors Formulas

→ A necessary and sufficient condition that three non-parallel (non-collinear) and non-zero vectors a, b and c to be coplanar is [a̅ b̅ c̅] = 0. If [a̅ b̅ c̅] ≠ 0, then the three vectors are non-coplanar.

→ If a̅, b̅, c̅ are three non-zero, non-coplanar vectors and V is the volume of the parallelopiped with co-terminus edges a̅, b̅ and c̅, then v = |(a × b). c|. = |[a b c]|

→ The volume of the parallelopiped formed with A, B, C, D as vertices is \(|[A B A C A D]|\) cubic units.

→ If a̅, b̅, c̅ represent the co-terminus edges of a tetrahedron, then its volume = \(\frac{1}{6}\)[a̅, b̅, c̅] cubic units.

→ If A(x1 y1 z1], B(x2, y2, z2] C(x3 y3 z3) and D(x4, y4 z4] are the vertices of a tetrahedron = \(\frac{1}{6}\)\(|[A B A C A D]|\)

  • Vector equation of a plane containing three non-collinear points a̅, b̅, c̅ is r̅ .[(b̅ × c̅) + (c̅ × a̅) + (a̅ × b̅)] = [a̅ b̅ c̅]
  • A unit vector perpendicular to the plane containing three non-collinear points a̅, b̅, c̅ is \(\frac{(\bar{a} \times b)+(b \times \bar{c})+(\bar{c} \times \bar{a})}{|(\bar{a} \times \bar{b})+(b \times \bar{c})+(\bar{c} \times a)|}\)
  • Length of the perpendicular from the origin to the plane containing three non-collinear points a̅, b̅, c̅ is \(\frac{|[\bar{a} b c]|}{|(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})|}\)

→ Vector equation of the plane passing through three non-collinear points a̅, b̅ and c̅ is [r̅ – a̅ b̅ – a̅ c̅ – a̅] = 0

→ Vector equation of the plane passing through a given point a̅ and parallel to the vectors b̅ and c̅ is [r b̅ c̅] = [a̅ b̅ c̅]

→ Vector equation of the line passing through the point a̅ and parallel to the vector b̅ is (r – a̅) × b̅ = 0

→ Distance of the point p(c) from a line joining the points A(a) and B(b) = |(c̅ – a̅) × b̅|
(25) i) Equation of the plane passing through the point p(x1, y1, z1) and perpendicular to the vector ai̅ + bj̅ + ck̅ is a (x – x1) + b(y – y1) + c(z – z1) = 0.

→ The equation of the plane passing through the points (x1 y1 z1), (x2, y2, z2) and
(x3, y3, z3) is \(\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|\) = 0

Skew lines:
Two lines l and m are called skew lines if there is no plane passing through these lines.

Shortest distance between the skew lines:
Shortest distance between the skew lines r̅ = a̅ + tb̅ and r̅ = c̅ + sd̅ is

Inter 1st Year Maths 1A Products of Vectors Formulas

Vector triple product:
If a̅, b̅ and c̅ are three vectors, products of the type (a̅ × b̅) × c̅, a̅ × (b̅ × c̅) from the vector triple products. From this definition.

  • If any one of a̅, b̅ and c̅ is a zero vector, a̅ × (b̅ × c̅) or (a̅ × b̅) c̅ = 0
  • If a̅ ≠ 0, b̅ ≠ 0, c̅ ≠ 0 and a̅ is parallel to b, then (a̅ × b̅) × c̅ = 0
  • If a̅ ≠ 0, b̅ ≠ 0, c̅ ≠ 0 and c̅ is perpendicular to the plane of a and b, then (a̅ × b̅) × c̅ = 0.

→ If a̅ ≠ 0, b̅ ≠ 0, c̅ ≠ 0, a̅ and b̅ are non-parallel vectors and c̅ is not perpendicular to the plane passing through a̅ and b, then
(a̅ × b̅) × c̅ = (a̅.c̅)b̅ – (b̅.c)a̅
a̅ × (b̅ × c̅) = (a̅.c̅)b̅ – (a.b̅)c̅

  • In general, vector triple product of three vectors need not satisfy the associative law. i.e., (a̅ × b) × c ≠ a̅ × (b × c)
    For any three vectors a̅, b̅ and c
  • a̅ × (b̅ × c̅) + b̅ × (c̅ × a̅) + c̅ × (a̅ × b̅) = 0
  • [a̅ × b̅ b̅ × c̅ c̅ × a̅] = [a̅ b̅ c̅]2

Scalar product of four vectors :
Scalar product of a̅, b̅, c̅ and d̅ is () = (a̅. c̅) (b̅.d̅) – (a̅. d̅) (b̅ .c̅) = \(\left|\begin{array}{ll}
\bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\
\bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d}
\end{array}\right|\)

Vector product of four vectors:
If a̅, b̅, c̅ and d̅ are four vectors,
(a̅ × b̅) × (c̅ × d̅) = [a̅ c̅ d̅] b̅ – [b̅ c̅ d̅]a̅ – [a b̅ d̅]c̅ – [a̅ b̅ c̅]d̅

Some important results:

  • [a̅ + b̅ b̅ + c̅ c̅ + a̅] = 2[a̅ b̅ c̅]
  • i̅ × (j̅ × k̅) + i̅ × (k̅ × i̅) + k̅ × (i̅ × j̅) = 0
  • [a̅ × b̅ b̅ × c̅ c̅ × a̅] = [a̅ b̅ c̅]2
    [a̅ b̅ c̅] [l̅ m̅ n̅] = \(\)
  • If a̅, b̅, c̅ be such that a is perpendicular to (b̅ + c̅), bis perpendicular to (c̅ + a̅), c̅ is perpendicular to (a̅ + b̅), then |a̅ + b̅ + c̅| = \(\sqrt{a^{2}+b^{2}+c^{2}}\)
  • If a line makes angles α, β, γ and δ with the diagonals of a cube, then
    cos2α + cos2β + cos2γ + cos2δ = \(\frac{4}{3}\)
  • i̅ × (a̅ × i̅) + j̅ × (a̅ × j̅) + k̅ × (a̅ × k̅) – 2a̅

→ Equation of the sphere with centre at c and radius ‘a’ is r2 – 2r̅. c̅ + c2 = a2

Inter 1st Year Maths 1A Products of Vectors Formulas

Scalar Product
Def: Let \(\vec{a}, \vec{b}\) be two vectors dot product (or) scalar product (or) direct product (or) inner product denoted by \(\vec{a}, \vec{b}\). Which is defined as \(|\vec{a}||\vec{b}|\)cos θ where cos θ = \((\vec{a}, \vec{b})\)
* The product \(\vec{a}, \vec{b}\) is zero when \(|\vec{a}|\) = 0 (or) \(|\vec{b}|\) = 0 (or) θ = 90°.

Sign of the scalar product :
Let \(\vec{a}, \vec{b}\) are two non-zero vectors

  • If θ is acute then \(\vec{a}.\vec{b}\)> 0 (i.e 0 < θ < 90°).
  • If θ is obtuse then \(\vec{a}.\vec{b}\) < 0 (i.e 90° < θ < 180°).
  • If θ = 90° then\(\vec{a} \cdot \vec{b}\) = o.
  • If θ = 0° then \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|\)
  • If θ = 180° then \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|\)

Note:

  • The dot product of two vectors is always scalar.
  • \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\) i.e dot product of two vectors is commutative.
  • If \(\vec{a} \cdot \vec{b}\) are two vectors then \(\vec{a} \cdot(-\vec{b})=(-\vec{a}) \cdot \vec{b}=-(\vec{a} \cdot \vec{b})\)
  • \((-\vec{a}) \cdot(-\bar{b})=\vec{a} \cdot \vec{b}\)
  • If l,m are two scalars and \(\vec{a} \cdot \vec{b}\) are two vectors then \((l \bar{a}) \cdot(m \bar{b})={lm}(\vec{a} \cdot \vec{b})\)
  • If \(\vec{a}\) and \(\vec{b}\) are two vectors then \(\vec{a} \cdot \vec{b}=\pm|\vec{a}||\vec{b}|\)
  • If \(\vec{a}\) is a vector then \(\vec{a} \cdot \vec{a}=|\vec{a}|^{2}\)
  • If \(\vec{a}\) is a vector \(\vec{a}\).\(\vec{a}\) is denoted by \(\overline{(a)^{2}}\) hence \(\overline{(a)^{2}}=|\vec{a}|^{2}\)

Components and orthogonal projection:
Def: Let \(\vec{a}=\overline{O A} \quad \vec{b}=\overline{O B}\) be two non zero vectors let the plane passing through B and perpendicular to a intersect \(\overline{O A}\) ln M.

  • If \((\vec{a}, \vec{b})\) is acute then OM is called component of \(\vec{b}\) on \(\vec{a}\).
  • If \((\vec{a}, \vec{b})\) is obtuse then -(OM) is called the component of \(\vec{b}\) on \(\vec{a}\).
  • The vector \(\overline{O M}\) is called component vector of \(\vec{b}\) on \(\vec{a}\).

Inter 1st Year Maths 1A Products of Vectors Formulas 1

Def: Let \(\vec{a}=\overline{O A}\); \(\vec{b}=\overrightarrow{P Q}\) be two vectors let the planes passing through P, Q and perpendicular to a intersect \([latex]\)[/latex] in L, M respectively then \(\overline{L M}\) is called orthogonal projection of \(\vec{b}\) on \(\vec{a}\)
Inter 1st Year Maths 1A Products of Vectors Formulas 2

Note:

  • The orthogonal projection of a vector b on a is equal tb component vector of b on a .
  • Component of a vector \(\vec{b}\) on \(\vec{a}\) is also called projection of \(\vec{b}\) on \(\vec{a}\)
  • If A< B, C, D are four points in the space then the component of \(\overline{A B}\) on \(\overline{C D}\) is same as the projection of \(\overline{A B}\) on the ray \(\overline{C D}\).

→ If \(\vec{a}, \vec{b}\) be two vectors (\(\vec{a} \neq \vec{o}\)) then

  • The component of \(\vec{b}\) on \(\vec{a}\) is \(\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}\)
  • The orthogonal projection of \(\vec{b}\) on \(\vec{a}\) is \(\frac{(\vec{b} \cdot \vec{a}) \vec{a}}{|\vec{a}|^{2}}\)

→ If \(\vec{i}, \vec{j}, \vec{k}\) form a right handed system of Ortho normal triad then

  • \(\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}\) = 1
  • \(\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{i}=0 ; \vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{j}=0 ; \vec{k} \cdot \vec{i}=\vec{i} \cdot \vec{k}=0\)

→ If \(\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\) \(\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}\) then \(\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\)

→ If \(\vec{a}, \vec{b}, \vec{c}\) are three vectors then
Inter 1st Year Maths 1A Products of Vectors Formulas 3

→ If \(\vec{r}\) is vector then \(\vec{r}=(\vec{r} \cdot \vec{i}) i+(\vec{r}+\vec{j}) \vec{j}+(\vec{r} \cdot \vec{k}) \vec{k}\)

Angle between the planes:
The angle between the planes is defined as the angle between the normals to the planes drawn from any point in the space.

Sphere:
The vector equation of a sphere with centre C having position vector \(\vec{c}\) and radius a is \((\vec{r}-\vec{c})^{2}\) = a2 i.e. \(\vec{r}^{2}-2 \vec{r} \cdot \vec{c}+c^{2}\) = a2

The vector equation of a sphere with A(a) and B(b) as the end points of a diameter is \((\vec{r}-\vec{a}) \cdot(\vec{r}-\vec{b})\) = 0 (or) \((\vec{r})^{2}-\vec{r} \cdot(\vec{a}+\vec{b})+\vec{a} \cdot \vec{b}\) = 0

Inter 1st Year Maths 1A Products of Vectors Formulas

Work done by a force :
If a force \(\vec{F}\) acting on a particle displaces it from a position A to the position B then work done W by this force \(\vec{F}\) is \(\vec{F} \cdot \overline{A B}\)

  • The vector equation of the plane which is at a distance of p from the origin along the unit vector \(\vec{n}\) is \(\vec{r} \cdot \vec{n}\) = p.
  • The vector equation of the plane passing through the origin and perpendicular to the vector m is r.m =0
  • The Cartesian equation of the plane which is at a distance of p from the origin along the unit vector n = li + mj + nk of the plane is n = lx + my + nz
  • The vector equation of the plane passing through the point a having position vector \(\vec{a}\) and perpendicular to the vector \(\vec{m}\) is \((\vec{r}-\vec{a}) \cdot \vec{m}\) = 0.
  • The vector equation of the plane passing through the point a having position vector \(\vec{a}\) and parallel to the plane r.m=q is \((\vec{r}-\vec{a}) \cdot \vec{m}\) = 0.

Cross( Vector) Product of Vectors:
Let \(\vec{a}, \vec{b}\) be two vectors. The cross product or vector product or skew product of vectors \(\vec{a}, \vec{b}\) is denoted by \(\vec{a} \times \vec{b}\) and is defined as follows

  • If \(\vec{a}\) = 0 or \(\vec{b}\) = 0 or \(\vec{a}, \vec{b}\) are parallel then \(\vec{a} \times \vec{b}\) = 0
  • If \(\vec{a}\) ≠ 0, \(\vec{b}\) ≠ 0, \(\vec{a}, \vec{b}\) are not parallel then \(\vec{a} \times \vec{b}=|\vec{a}||\vec{b}|(\sin \theta) \vec{n}\) where \(\vec{n}\) is a unit vector perpendicular to a and b so that a, b, n form a right handed system.

Note:

  • \(\vec{a} \times \vec{b}\) is a vector
  • If \(\vec{a}, \vec{b}\) are not parallel then \(\vec{a} \times \vec{b}\) is perpendicular to both a and b
  • If \(\vec{a}, \vec{b}\) are not parallel then \(\vec{a}, \vec{b}\) , \(\vec{a} \times \vec{b}\) form a right handed system .
  • For any vector \(\vec{a}\) \(\vec{a} \times \vec{b}\) = o

2. If \(\vec{a}, \vec{b}\) are two vectors \(\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}\) this is called “anti commutative law”

3. If \(\vec{a}, \vec{b}\) are two vectors then \(\vec{a} \times(-\vec{b})=(-\vec{a}) \times \vec{b}=-(\vec{a} \times \vec{b})\)

4. If \(\vec{a}, \vec{b}\) are two vectors then \((-\vec{a}) \times(-\vec{b})=\vec{a} \times \vec{b}\)

5. If \(\vec{a}, \vec{b}\) are two vectors l,m are two scalars then (la) x (mb) = lm(a x b)

6. If \(\vec{a}, \vec{b}, \vec{b}\) are three vectos, then

  • \(\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}\)
  • \((\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{c} \times \vec{a}\)

7. If \(\vec{l}, \vec{l}, \vec{k}\) from a right handed system of orthonormal triad then

  • \(\vec{l} \times \vec{l}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=\vec{o}\)
  • \(\vec{i} \times \vec{j}=\vec{k}=-\vec{j} \times \vec{l} ; \vec{j} \times \vec{k}=\vec{l}=-\vec{k} \times \vec{j} ; \vec{k} \times \vec{l}=\vec{j}=-\vec{l} \times \vec{k}\)

→ If \(\vec{a}=a_{1} \vec{l}+a_{2} \vec{j}+a_{3} \vec{k}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}\) then \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{l} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|\)

Inter 1st Year Maths 1A Products of Vectors Formulas

→ If \(\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \quad \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}\) where \(\vec{l}, \vec{m}, \vec{n}\) form a right system of non coplanar vectors then \(\)

→ If \(\vec{a}, \vec{b}\) are two vectors then \((\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}\) = a2b2.

Vector Area:
If A is the area of the region bounded by a plane curve and \(\vec{n}\) is the unit vector perpendicular to the plane of the curve such that the direction of curve drawn can be considered anti clock wise then A\(\vec{n}\) is called vector area of the plane region bounded by the curve.

  • The vector area of triangle ABC is \(\frac{1}{2} \overline{A B} \times \overrightarrow{A C}=\frac{1}{2} \overrightarrow{B C} \times \overrightarrow{B A}=\frac{1}{2} \overline{C A} \times \overrightarrow{C B}\)
  • If \(\vec{a}, \vec{b}, \vec{c}\)are the position vectors of the vertices of a triangle then the vector area of the triangle is \(\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})\)
  • If ABCD is a parallelogram and \(\overrightarrow{A B}=\vec{a}, \quad \overrightarrow{B C}=\vec{b}\) then the vector area of ABCD is \(\vec{a} \times \vec{b}\).
  • If ABCD is a parallelogram and \(\overrightarrow{A C}=\vec{a}, \overrightarrow{B C}=\vec{b}\) then vector area of parallelogram ABCD is \(\frac{1}{2}(\vec{a} \times \vec{b})\)
  • The vector equation of a line passing through the point A with position vector a and perpendicular to the vectors \(\vec{b} \times \vec{c}\) is \(\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})\).

Scalar Triple Product:

  • If \(\vec{a}, \vec{b}, \vec{c}\) are the three vectors, then the real numbers \((\vec{a} \times \vec{b}) \cdot \vec{c}\) is called scalar triple product denoted by \([\vec{a} \vec{b} \vec{c}]\). This is read as ‘box’ \(\vec{a}, \vec{b}, \vec{c}\)
  • If V is the volume of the parallelepiped with coterminous edges a, b, c then V = |\([\vec{a} \vec{b} \vec{c}]\)|
  • If \(\vec{a}, \vec{b}, \vec{c}\) form the right handed system of vectors then V = \([\vec{a} \vec{b} \vec{c}]\)
  • If \(\vec{a}, \vec{b}, \vec{c}\) form left handed system of vectors then -V = \([\vec{a} \vec{b} \vec{c}]\)

Note:

  • The scalar triple product is independent of the position of dot and cross. i.e. \(\vec{a} \times \vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{b} \times \vec{c}\)
  • The value of the scalar triple product is unaltered so long as the cyclic order remains unchanged
    \([\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{a}]=[\vec{c} \vec{a} \vec{b}]\)
  • The value of a scalar triple product is zero if two of its vectors are equal
    \([\vec{a} \vec{a} \vec{b}]\)= 0 \([\vec{b} \vec{b} \vec{c}]\) = 0
  • If a, b, c are coplanar then \([\vec{a} \vec{b} \vec{c}]\) = 0
  • If a,b,c form right handed system then \([\vec{a} \vec{b} \vec{c}]\) > 0
  • If a,b,c form left handed system then \([\vec{a} \vec{b} \vec{c}]\) < 0
  • The value of the triple product changes its sign when two vectors are interchanged
    \([\vec{a} \vec{b} \vec{c}]\) = –\([\vec{a} \vec{c} \vec{b}]\)
  • If l,m, n are three scalars \(\vec{a}, \vec{b}, \vec{c}\) are three vectors then \(\)

→ Three non zero non parallel vectors abc nare coplanar iff \([l \vec{a} m \vec{b} \quad n \vec{c}]={lmn}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)= 0

→ If \(\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}, \vec{c}=c_{1} \vec{l}+c_{2} \vec{m}+c_{3} \vec{n}\) where \(\vec{l}, \vec{m}, \vec{n}\) form a right handed system of non coplanar vectors, then \([\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}
\vec{m} \times \vec{n} & \vec{n} \times \vec{l} & \vec{l} \times \vec{m} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\)

→ The vectors equation of plane passing through the points A, B with position vectors \(\vec{a}, \vec{b}\) and parallel to the vector \(\vec{c}\) is \([\vec{r}-\vec{a} \vec{b}-\vec{a} \vec{c}]\) (or) \([\vec{r} \vec{b} \vec{c}]+[\vec{r} \vec{c} \vec{a}]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)

→ The vector equation of the plane passing through the point A with position vector \(\vec{a}\) and parallel to \(\vec{b}, \vec{c}\) is \([\vec{r}-\vec{a} \vec{b} \vec{c}]\) = 0 i.e. \(\left[\begin{array}{lll}
\vec{r} & \vec{b} & \vec{c}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]\)

Inter 1st Year Maths 1A Products of Vectors Formulas

Skew lines:
Two lines are said to be skew lines if there exist no plane passing through them i.e. the lines lie on two difference planes
Def:- l1 and l2 are two skew lines. If P is a point on l1 and Q is a point on l2 such that \(\overleftarrow{P Q}\) ⊥ l1 and PQ ⊥ l2 then \(\overleftarrow{P Q}\) is called shortest distance and \(\overleftarrow{P Q}\) is called shortest distance line between the lines l1 and l2.

The shortest distance between the skew lines \(\vec{r}=\vec{a}+t \vec{b}\) and \(\vec{r}=\vec{c}+t \vec{d}\) is \(\frac{|[\vec{a}-\vec{c} \vec{b} \vec{d}]|}{|\vec{b} \times \vec{d}|}\)

Vector Triple Product:
Cross Product of Three vectors : For any three vectors \(\bar{a}, \bar{b}\) or \(\bar{c}\) then cross product or vector product of these vectors are given as \(\bar{a} \times(\bar{b} \times \bar{c}),(\bar{a} \times \bar{b}) \times \bar{c}\) or \((\bar{b} \times \bar{c}) \times \bar{a}\) etc.
Inter 1st Year Maths 1A Products of Vectors Formulas 4
vi. If \(\bar{a}, \bar{b}\) or \(\bar{c}\) are non zero vectors and \(\) then b and c are parallel (or collinear) vectors.

vii. If \(\bar{a}, \bar{b}\) or \(\bar{c}\) are non zero and non parallel vectors then \(\bar{a} \times(\bar{b} \times \bar{c}), \quad \bar{b} \times(\bar{c} \times\bar{a})\) and \(\bar{c} \times(\bar{a} \times \bar{b})\) are non collinear vectors.

viii. If \(\bar{a}, \bar{b}\) or \(\bar{c}\) are any three vectors then \(\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})=\overline{\mathrm{O}}\)

ix. If \(\bar{a}, \bar{b}\) or \(\bar{c}\) are any three vectors then \(\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})\) are coplanar. [since sum of these vectors is zero]

x. \(\bar{a}(\bar{b} \times \bar{c})\) is vector lies in the plane of \(\bar{b}\) and \(\bar{c}\) or parallel to the plane of \(\bar{b}\) and \(\bar{c}\).

Inter 1st Year Maths 1A Products of Vectors Formulas

Product of Four Vectors:
Dot product of four vectors : The dot product of four vectors a̅, b̅, c̅ and d̅ is given as \((\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c})=\left|\begin{array}{ll}
\bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\
\bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d}
\end{array}\right|\)

→ Cross product of four vectors : If a̅, b̅, c̅ and d̅ are any four vectors then
Inter 1st Year Maths 1A Products of Vectors Formulas 5

→ The vectorial equation of the plane passing through the point a and parallel to the vectors b̅, c̅is \([\overline{\mathrm{r}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]\)

→ The vectorial equation of the plane passing through the points a̅, b̅ and parallel to the vector c̅ is \([\overline{\mathrm{rb}} \overline{\mathrm{c}}]+[\overline{\mathrm{r}} \overline{\mathrm{c}} \overline{\mathrm{a}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]\)

→ The vectorial equation of the plane passing through the points a̅, b̅, c̅ is \([\overline{\mathrm{r}} \overline{\mathrm{b}} \overline{\mathrm{c}}]+[\overline{\mathrm{r}} \overline{\mathrm{c}} \overline{\mathrm{a}}]+[\overline{\mathrm{ra}} \overline{\mathrm{b}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]\)

→ If the points with the position vectorsa̅, b̅, c̅, d̅ are coplanar, then the condition is \([\overline{\mathrm{a}} \overline{\mathrm{bd}}]+[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]+[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{d}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]\)

Inter 1st Year Maths 1A Products of Vectors Formulas

→ Length of the perpendicular from the origin to the plane passing through the points a̅, b̅, c̅ is \(\frac{|[\overline{\mathrm{a} b} \overline{\mathrm{c}}]|}{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}\)

→ Length of the perpendicular from the point c̅ on to the line joining the points a̅, b̅ is \(\frac{\mid(\overline{\mathrm{a}}-\overline{\mathrm{c}}) \times(\overline{\mathrm{c}}-\overline{\mathrm{b}})}{|\overline{\mathrm{a}}-\overline{\mathrm{b}}|}\)

→ P, Q, R are non collinear points. Then distance of P to the plane OQR is OP. \(\left|\frac{\overline{\mathrm{OP}} \cdot(\overline{\mathrm{OQ}} \times \overline{\mathrm{OR}})}{|\overline{\mathrm{OQ}} \times \overline{\mathrm{OR}}|}\right|\)

→ Perpendicular distance from P(α̅ ) to the plane passing through A(a̅) and parallel to the vectors b and c is
Inter 1st Year Maths 1A Products of Vectors Formulas 6

→ Length of the perpendicular from the point c̅ to the line \(\overline{\mathrm{r}}=\overline{\mathrm{a}}+\mathrm{tb}\) is \(\frac{|(\overline{\mathrm{c}}-\overline{\mathrm{a}}) \times \overline{\mathrm{b}}|}{|\overline{\mathrm{b}}|}\)