TS Inter 1st Year Maths 1A Question Paper May 2018

Thoroughly analyzing TS Inter 1st Year Maths 1A Model Papers and TS Inter 1st Year Maths 1A Question Paper May 2018 helps students identify their strengths and weaknesses.

TS Inter 1st Year Maths 1A Question Paper May 2018

Time: 3 Hours
Maximum Marks: 75

Note: This question paper consists of three sections A, B, and C.

Section – A
(10 × 2 = 20 Marks)

I. Very Short Answer Type Questions.

  • Answer ALL questions.
  • Each question carries TWO marks.

Question 1.
If f: R – {0} → R is defined by f(x) = x3 – \(\frac{1}{x^3}\), then show that f(x) + f(\(\frac{1}{x}\)) = 0.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q1

Question 2.
Find the domain of the real valued function f(x) = \(\frac{1}{\left(x^2-1\right)(x+3)}\).
Solution:
Given f(x) = \(\frac{1}{\left(x^2-1\right)(x+3)}\)
(x2 – 1) (x + 3) ≠ 0
⇒ (x + 1) (x – 1) (x + 3) ≠ 0
⇒ x ≠ -1, x ≠ 1, x ≠ -3
∴ Domain of f = R – [-3, -1, 1]

TS Inter 1st Year Maths 1A Question Paper May 2018

Question 3.
If \(\left[\begin{array}{cc}
x-3 & 2 y-8 \\
z+2 & 6
\end{array}\right]=\left[\begin{array}{rr}
5 & 2 \\
-2 & a-4
\end{array}\right]\), then find the values of x, y, z and a.
Solution:
Given \(\left[\begin{array}{cc}
x-3 & 2 y-8 \\
z+2 & 6
\end{array}\right]=\left[\begin{array}{rr}
5 & 2 \\
-2 & a-4
\end{array}\right]\)
x – 3 = 5 ⇒ x = 8
2y – 8 = 2 ⇒ 2y = 10 ⇒ y = 5
z + 2 = -2 ⇒ z = -4
6 = a – 4 ⇒ a = 10
∴ x = 8, y = 5, z = -4, a = 10

Question 4.
If A = \(\left[\begin{array}{rrr}
-1 & 2 & 3 \\
2 & 5 & 6 \\
3 & x & 7
\end{array}\right]\) is a symmetric matrix, then find x.
Solution:
Given A = \(\left[\begin{array}{rrr}
-1 & 2 & 3 \\
2 & 5 & 6 \\
3 & x & 7
\end{array}\right]\)
Since A is a symmetric matrix.
∴ AT = A
\(\left[\begin{array}{rrr}
-1 & 2 & 3 \\
2 & 5 & x \\
3 & 6 & 7
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 2 & 3 \\
2 & 5 & 6 \\
3 & x & 7
\end{array}\right]\)
∴ x = 6

Question 5.
If the vectors \(-3 \vec{i}+4 \vec{j}+\lambda \vec{k}\) and \(\mu \vec{i}+8 \vec{j}+6 \vec{k}\) are collinear vectors, then find λ and µ.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q5
TS Inter 1st Year Maths 1A Question Paper May 2018 Q5.1

Question 6.
Find the vector equation of the plane passing through the points \(\vec{i}-2 \vec{j}+5 \vec{k},-5 \vec{j}-\vec{k}\) and \(-3 \vec{i}+5 \vec{j}\).
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q6

Question 7.
Find the angle between the planes \(\vec{r} \cdot(2 \vec{i}-\vec{j}+2 \vec{k})\) = 3 and\(\vec{r} \cdot(3 \vec{i}+6 \vec{j}+\vec{k})\) = 4.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q7
TS Inter 1st Year Maths 1A Question Paper May 2018 Q7.1

Question 8.
If a cos θ – b sin θ = c, then show that a sin θ + b cos θ = ±\(\sqrt{a^2+b^2-c^2}\).
Solution:
Given a cos θ – b sin θ = c
Let a sin θ + b cos θ = λ
By squaring and adding, we get
(a cos θ – b sin θ)2 + (a sin θ + b cos θ)2 = c2 + λ2
⇒ a2 cos2θ – 2ab sin θ cos θ + b2 sin2θ + a2 sin2θ + 2ab sin θ cos θ + b2 cos2θ = c2 + λ2
⇒ a2 (cos2θ + sin2θ) + b2 (sin2θ + cos2θ) = c2 + λ2
⇒ a2 (1) + b2 (1) = c2 + λ2
⇒ a2 + b2 = c2 + λ2
⇒ λ2 = a2 + b2 – c2
⇒ λ = ±\(\sqrt{a^2+b^2-c^2}\)
∴ a sin θ + b cos θ = ±\(\sqrt{a^2+b^2-c^2}\)

TS Inter 1st Year Maths 1A Question Paper May 2018

Question 9.
Find the minimum and maximum values of 3 cos x + 4 sin x.
Solution:
Let f(x) = 3 cos x + 4 sin x
Here a = 3, b = 4, c = 0.
Minimum value of f(x) = c – \(\sqrt{a^2+b^2}\)
= 0 – \(\sqrt{9+16}\)
= 0 – \(\sqrt{25}\)
= -5
Maximum value of f(x) = c + \(\sqrt{a^2+b^2}\)
= 0 + \(\sqrt{9+16}\)
= 0 + \(\sqrt{25}\)
= 5

Question 10.
Show that \(\tan h^{-1}\left(\frac{1}{2}\right)=\frac{1}{2} \log _e^3\).
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q10

Section – B
(5 × 4 = 20 Marks)

II. Short Answer Type Questions.

  • Answer ANY FIVE questions.
  • Each question carries FOUR marks.

Question 11.
If 3A = \(\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right]\), then show that A-1 = A’.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q11
TS Inter 1st Year Maths 1A Question Paper May 2018 Q11.1
TS Inter 1st Year Maths 1A Question Paper May 2018 Q11.2
TS Inter 1st Year Maths 1A Question Paper May 2018 Q11.3

Question 12.
a, b, c are non-coplanar vectors. Prove that the following four points are coplanar:
-a + 4b – 3c, 3a + 2b – 5c, -3a + 8b – 5c, -3a + 2b + c.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q12
TS Inter 1st Year Maths 1A Question Paper May 2018 Q12.1

Question 13.
The vectors AB = \(3 \vec{i}-2 \vec{j}+2 \vec{k}\) and AD = \(\vec{i}-2 \vec{k}\) represent the adjacent sides of a parallelogram ABCD. Find the angle between the diagonals.
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q13
TS Inter 1st Year Maths 1A Question Paper May 2018 Q13.1

Question 14.
Show that \(\cos ^4\left(\frac{\pi}{8}\right)+\cos ^4\left(\frac{3 \pi}{8}\right)+\cos ^4\left(\frac{5 \pi}{8}\right)+\cos ^4\left(\frac{7 \pi}{8}\right)=\frac{3}{2}\).
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q14
TS Inter 1st Year Maths 1A Question Paper May 2018 Q14.1
= R.H.S
∴ L.H.S = R.H.S
∴ \(\cos ^4\left(\frac{\pi}{8}\right)+\cos ^4\left(\frac{3 \pi}{8}\right)+\cos ^4\left(\frac{5 \pi}{8}\right)+\cos ^4\left(\frac{7 \pi}{8}\right)=\frac{3}{2}\)

Question 15.
Solve 2 cos2θ – √3 sin θ + 1 = 0.
Solution:
Given 2 cos2θ – √3 sin θ + 1 = 0
⇒ 2(1 – sin2θ) – √3 sin θ + 1 = 0
⇒ 2 – 2 sin2θ – √3 sin θ + 1 = 0
⇒ -2 sin2θ – √3 sin θ + 3 = 0
⇒ 2 sin2θ + √3 sin θ – 3 = 0
⇒ 2 sin2θ + 2√3 sin θ – √3 sin θ – 3 = 0
⇒ 2 sin θ (sin θ + √3) – √3 (sin θ + √3 ) = 0
⇒ (sin θ + √3) (2 sin θ – √3) = 0
since sin θ + √3 ≠ 0
∴ 2 sin θ – √3 = 0
⇒ 2 sin θ = √3
⇒ sin θ = \(\frac{\sqrt{3}}{2}\) = sin \(\frac{\pi}{3}\)
∴ θ = nπ + (-1)n \(\frac{\pi}{3}\), n ∈ z
∴ Solution set x = [nπ + (-1)n \(\frac{\pi}{3}\)/n ∈ z]

TS Inter 1st Year Maths 1A Question Paper May 2018

Question 16.
Solve the following equation for x:
\(3 \sin ^{-1}\left(\frac{2 x}{1+x^2}\right)-4 \cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^2}\right)=\frac{\pi}{3}\)
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q16

Question 17.
If sin θ = \(\frac{a}{b+c}\), then show that cos θ = \(\frac{2 \sqrt{b c}}{b+c} \cos \frac{A}{2}\).
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q17

Section – C
(5 × 7 = 35 Marks)

III. Long Answer Type Questions.

  • Answer ANY FIVE questions.
  • Each question carries SEVEN marks.

Question 18.
If f = {(4, 5), (5, 6), (6, -4)} and g = {(4, -4), (6, 5), (8, 5)} then find:
(i) f + g
(ii) 2f + 4g
(iii) f + 4
(iv) \(\frac{f}{g}\)
(v) \(\sqrt{f}\)
(vi) f2
(vii) |f|
Solution:
Given f = [(4, 5), (5, 6), (6, -4)]
g = [(4, -4), (6, 5), (8, 5)]
∴ Domain of f = [4, 5, 6]
Domain of g = [4, 6, 8]
∴ The domain of f ∩ g = [4, 6]
(i) (f + g) (4) = f(4) + g(4)
= 5 + (-4)
= 1
(f + g) (6) = f(6) + g(6)
= -4 + 5
= 1
∴ f + g = [(4, 1), (6, 1)]
(ii) (2f + 4g) (4) = 2f(4) + 4g(4)
= 2(5) + 4(-4)
= 10 – 16
= -6
(2f + 4g) (6) = 2f(6) + 4g(6)
= 2(-4) + 4(5)
= -8 + 20
= 12
∴ 2f + 4g = [(4, – 6), (6,12)]
(iii) (f + 4) (4) = f(4) + 4
= 5 + 4
= 9
(f + 4) (5) = f(5) + 4
= 6 + 4
= 10
(f + 4) (6) = f(6) + 4
= -4 + 4
= o
∴ f + 4 = [(4, 9), (5, 10), (6, 0)]
TS Inter 1st Year Maths 1A Question Paper May 2018 Q18
(vi) f2(4) = [f(4)]2 = 52 = 25
f2(5) = [f(5)]2 = 62 = 36
f2(6) = [f(6)]2 = (-4)2 = 16
∴ f2 = [(4, 25), (5, 36), (6, 16)]
(vii) |f|(4) = |f(4)| = |5| = 5
|f| (5) = |f(5)| = |6| = 6
|f| (6) = |f(6)| = |-4| = 4
|∴ f| = [(4, 5), (5, 6), (6, 4)]

Question 19.
Show that ∀ n ∈ N, 12 + (12 + 22) + (12 + 22 + 32) + ……. upto n terms = \(\frac{n(n+1)^2(n+2)}{12}\) by Mathematical Induction.
Solution:
The nth term of the given series is (12 + 22 + 32 + …….. + n2)
Let p(n) be the statement:
12 + (12 + 22) + (12 + 22 + 32) + …… + (12 + 22 + ……. + n2) = \(\frac{n(n+1)^2(n+2)}{12}\)
and the sum on the L.H.S. is denoted by S(n).
Since s(1) = 12 = \(\frac{1(1+1)^2(1+2)}{12}\) = 1 = 12
∴ p(1) is true.
Assume that the statement is true for n = k
(i.e.,) S(k) = 12 + (12 + 22) + …… + (12 + 22 + ….. + k2) = \(\frac{k(k+1)^2(k+2)}{12}\)
We show that S(k + 1) = \(\frac{(k+1)(k+2)^2(k+3)}{12}\)
We observe that
S(k + 1) = 12 + (12 + 22) + …… + (12 + 22 + 32 + …… + k2) + [12 + 22 + ……. + k2 + (k + 1)2]
= S(k) + [12 + 22 + ……. + k2 + (k + 1)2]
= \(\frac{k(k+1)^2(k+2)}{12}\) + [12 + 22 + ……. + k2 + (k + 1)2]
TS Inter 1st Year Maths 1A Question Paper May 2018 Q19
TS Inter 1st Year Maths 1A Question Paper May 2018 Q19.1
∴ The statement holds for n = k + 1.
∴ By the principle of mathematical induction, p(n) is true for all n ∈ N.
(i.e.,) 12 + (12 + 22) + (12 + 22 + 32) + ……. + (12 + 22 + …… + n2) = \(\frac{n(n+1)^2(n+2)}{12}\)

Question 20.
Show that \(\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|^2=\left|\begin{array}{ccc}
2 b c-a^2 & c^2 & b^2 \\
c^2 & 2 a c-b^2 & a^2 \\
b^2 & a^2 & 2 a b-c^2
\end{array}\right|\) = (a3 + b3 + c3 – 3abc)2
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q20
TS Inter 1st Year Maths 1A Question Paper May 2018 Q20.1

Question 21.
Solve the following system of equations x – y + 3z = 5, 4x + 2y – z = 0, -x + 3y + z = 5 by Cramer’s rule.
Solution:
Given
x – y + 3z = 5
4x + 2y – z = 0
-x + 3y + z = 5
Given system of equations can be written as AX = B
TS Inter 1st Year Maths 1A Question Paper May 2018 Q21
= 1(2 + 3) – (-1) (4 – 1) + 3(12 + 2)
= 5 + 3 + 42
= 50
Δ1 = \(\left|\begin{array}{rrr}
5 & -1 & 3 \\
0 & 2 & -1 \\
5 & 3 & 1
\end{array}\right|\)
= 5(2 + 3) – (-1) (0 + 5) + 3(0 – 10)
= 25 + 5 – 30
= 0
Δ2 = \(\left|\begin{array}{rrr}
1 & 5 & 3 \\
4 & 0 & -1 \\
-1 & 5 & 1
\end{array}\right|\)
= 1(0 + 5) – 5(4 – 1) + 3(20 + 0)
= 5 – 15 + 60
= 50
Δ3 = \(\left|\begin{array}{rrr}
1 & -1 & 5 \\
4 & 2 & 0 \\
-1 & 3 & 5
\end{array}\right|\)
= 1(10 – 0) – (-1) (20 + 0) + 5(12 + 2)
= 10 + 20 + 70
= 100
x = \(\frac{\Delta_1}{\Delta}=\frac{0}{50}\) = 0
y = \(\frac{\Delta_2}{\Delta}=\frac{50}{50}\) = 1
z = \(\frac{\Delta_3}{\Delta}=\frac{100}{50}\) = 2
∴ x = 0, y = 1, z = 2

TS Inter 1st Year Maths 1A Question Paper May 2018

Question 22.
If \(\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=2 \vec{i}+\vec{j}+\vec{k}, \vec{c}=\vec{i}+2 \vec{j}-\vec{k}\), find \(\vec{a} \times(\vec{b} \times \vec{c})\) and \(|(\vec{a} \times \vec{b}) \times \vec{c}|\).
Solution:
TS Inter 1st Year Maths 1A Question Paper May 2018 Q22
TS Inter 1st Year Maths 1A Question Paper May 2018 Q22.1
TS Inter 1st Year Maths 1A Question Paper May 2018 Q22.2

Question 23.
If A, B, C are angles in a triangle, then prove that cos A + cos B – cos C = -1 + 4 \(\cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}\).
Solution:
Given A + B + C = 180°
⇒ \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}\) = 90°
L.H.S = cos A + cos B – cos C
TS Inter 1st Year Maths 1A Question Paper May 2018 Q23
TS Inter 1st Year Maths 1A Question Paper May 2018 Q23.1
= R.H.S
∴ L.H.S = R.H.S
∴ cos A + cos B – cos C = -1 + 4 \(\cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}\).

TS Inter 1st Year Maths 1A Question Paper May 2018

Question 24.
In ΔABC, if r1 = 8, r2 = 12, r3 = 24, find a, b, c.
Solution:
Given r1 = 8, r2 = 12, r3 = 24
TS Inter 1st Year Maths 1A Question Paper May 2018 Q24
Δ = rs
⇒ 96 = 4s
⇒ s = 24
r1 = \(\frac{\Delta}{s-a}\)
⇒ s – a = \(\frac{\Delta}{r_1}\)
⇒ 24 – a = \(\frac{96}{8}\)
⇒ 24 – a = 12
⇒ a = 12
r2 = \(\frac{\Delta}{s-b}\)
⇒ s – b = \(\frac{\Delta}{r_2}\)
⇒ 24 – b = \(\frac{96}{12}\)
⇒ 24 – b = 8
⇒ b = 16
r3 = \(\frac{\Delta}{s-c}\)
⇒ s – c = \(\frac{\Delta}{r_3}\)
⇒ s – c = \(\frac{96}{24}\)
⇒ 24 – c = 4
⇒ c = 20
∴ a = 12, b = 16, c = 20

Leave a Comment