Inter 1st Year Maths 1A Properties of Triangles Formulas

Use these Inter 1st Year Maths 1A Formulas PDF Chapter 10 Properties of Triangles to solve questions creatively.

Intermediate 1st Year Maths 1A Properties of Triangles Formulas

→ Sine Rule :
In ΔABC \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\) = 2R where R is the circumradius of ΔABC.

→ Cosine Rule :
a2 = b2 + c2 – 2bc. cos A ;
b2 = c2 + a2 – 2ca.cos B;
c2 = a2 + b2 – 2ab. cos C.

→ cos A = \(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\),
cos B = \(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\),
cos C = \(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\)

→ a = b cos C + c cos B,b = c cos A + a cos C and c = a cos B + b cos A (Projection rule)

→ tan \(\frac{B-C}{2}=\frac{b-c}{b+c}\) cot\(\frac{A}{2}\) (Napier’s analogy or tangent rule)

  • sin\(\frac{A}{2}\) = \(\sqrt{\frac{(s-b)(s-c)}{b c}}\)
  • cos\(\frac{A}{2}\) = \(\sqrt{\frac{s(s-a)}{b c}}\)
  • tan\(\frac{A}{2}\) = \(\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}=\frac{\Delta}{s(s-a)}\)

→ Δ = area of ΔABC = \(\frac{1}{2}\) bc sin A = \(\frac{1}{2}\) ca sin B = \(\frac{1}{2}\) ab sin C
= \(\sqrt{s(s-a)(s-b)(s-c)}=\frac{a b c}{4 R}\)
= 2R2 sin A sin B sin C

  • r = \(\frac{\Delta}{s}\)
  • r1 = \(\frac{\Delta}{s-a}\)
  • r2 = \(\frac{\Delta}{s-b}\)
  • r3 = \(\frac{\Delta}{s-c}\)

Inter 1st Year Maths 1A Properties of Triangles Formulas

→ r = 4 R sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\); r1 = 4Rsin \(\frac{A}{2}\) cos \(\frac{B}{2}\) cos \(\frac{C}{2}\)

→ r = (s – a) tan \(\frac{A}{2}\);
r1 = s tan \(\frac{A}{2}\) = (s – c) cot \(\frac{B}{2}\) = (s – b) cot \(\frac{C}{2}\)

→ Mollweide rule.
In ΔABC \(\frac{a+b}{c}=\frac{\cos \left(\frac{A-B}{2}\right)}{\sin \frac{C}{2}}\)
\(\frac{b+c}{a}=\frac{\cos \left(\frac{B-C}{2}\right)}{\sin \frac{A}{2}}\)
\(\frac{c+a}{b}=\frac{\cos \left(\frac{C-A}{2}\right)}{\sin \frac{B}{2}}\)