ffmpeg / libavcodec / jfdctfst.c @ 57514323
History  View  Annotate  Download (7.39 KB)
1 
/*


2 
* jfdctfst.c

3 
*

4 
* Copyright (C) 19941996, Thomas G. Lane.

5 
* This file is part of the Independent JPEG Group's software.

6 
* For conditions of distribution and use, see the accompanying README file.

7 
*

8 
* This file contains a fast, not so accurate integer implementation of the

9 
* forward DCT (Discrete Cosine Transform).

10 
*

11 
* A 2D DCT can be done by 1D DCT on each row followed by 1D DCT

12 
* on each column. Direct algorithms are also available, but they are

13 
* much more complex and seem not to be any faster when reduced to code.

14 
*

15 
* This implementation is based on Arai, Agui, and Nakajima's algorithm for

16 
* scaled DCT. Their original paper (Trans. IEICE E71(11):1095) is in

17 
* Japanese, but the algorithm is described in the Pennebaker & Mitchell

18 
* JPEG textbook (see REFERENCES section in file README). The following code

19 
* is based directly on figure 48 in P&M.

20 
* While an 8point DCT cannot be done in less than 11 multiplies, it is

21 
* possible to arrange the computation so that many of the multiplies are

22 
* simple scalings of the final outputs. These multiplies can then be

23 
* folded into the multiplications or divisions by the JPEG quantization

24 
* table entries. The AA&N method leaves only 5 multiplies and 29 adds

25 
* to be done in the DCT itself.

26 
* The primary disadvantage of this method is that with fixedpoint math,

27 
* accuracy is lost due to imprecise representation of the scaled

28 
* quantization values. The smaller the quantization table entry, the less

29 
* precise the scaled value, so this implementation does worse with high

30 
* qualitysetting files than with lowquality ones.

31 
*/

32  
33 
#include <stdlib.h> 
34 
#include <stdio.h> 
35 
#include "common.h" 
36 
#include "dsputil.h" 
37  
38 
#define DCTSIZE 8 
39 
#define GLOBAL(x) x

40 
#define RIGHT_SHIFT(x, n) ((x) >> (n))

41 
#define SHIFT_TEMPS

42  
43 
/*

44 
* This module is specialized to the case DCTSIZE = 8.

45 
*/

46  
47 
#if DCTSIZE != 8 
48 
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 
49 
#endif

50  
51  
52 
/* Scaling decisions are generally the same as in the LL&M algorithm;

53 
* see jfdctint.c for more details. However, we choose to descale

54 
* (right shift) multiplication products as soon as they are formed,

55 
* rather than carrying additional fractional bits into subsequent additions.

56 
* This compromises accuracy slightly, but it lets us save a few shifts.

57 
* More importantly, 16bit arithmetic is then adequate (for 8bit samples)

58 
* everywhere except in the multiplications proper; this saves a good deal

59 
* of work on 16bitint machines.

60 
*

61 
* Again to save a few shifts, the intermediate results between pass 1 and

62 
* pass 2 are not upscaled, but are represented only to integral precision.

63 
*

64 
* A final compromise is to represent the multiplicative constants to only

65 
* 8 fractional bits, rather than 13. This saves some shifting work on some

66 
* machines, and may also reduce the cost of multiplication (since there

67 
* are fewer onebits in the constants).

68 
*/

69  
70 
#define CONST_BITS 8 
71  
72  
73 
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus

74 
* causing a lot of useless floatingpoint operations at run time.

75 
* To get around this we use the following precalculated constants.

76 
* If you change CONST_BITS you may want to add appropriate values.

77 
* (With a reasonable C compiler, you can just rely on the FIX() macro...)

78 
*/

79  
80 
#if CONST_BITS == 8 
81 
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ 
82 
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ 
83 
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ 
84 
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ 
85 
#else

86 
#define FIX_0_382683433 FIX(0.382683433) 
87 
#define FIX_0_541196100 FIX(0.541196100) 
88 
#define FIX_0_707106781 FIX(0.707106781) 
89 
#define FIX_1_306562965 FIX(1.306562965) 
90 
#endif

91  
92  
93 
/* We can gain a little more speed, with a further compromise in accuracy,

94 
* by omitting the addition in a descaling shift. This yields an incorrectly

95 
* rounded result half the time...

96 
*/

97  
98 
#ifndef USE_ACCURATE_ROUNDING

99 
#undef DESCALE

100 
#define DESCALE(x,n) RIGHT_SHIFT(x, n)

101 
#endif

102  
103  
104 
/* Multiply a DCTELEM variable by an INT32 constant, and immediately

105 
* descale to yield a DCTELEM result.

106 
*/

107  
108 
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 
109  
110  
111 
/*

112 
* Perform the forward DCT on one block of samples.

113 
*/

114  
115 
GLOBAL(void)

116 
jpeg_fdct_ifast (DCTELEM * data) 
117 
{ 
118 
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
119 
DCTELEM tmp10, tmp11, tmp12, tmp13; 
120 
DCTELEM z1, z2, z3, z4, z5, z11, z13; 
121 
DCTELEM *dataptr; 
122 
int ctr;

123 
SHIFT_TEMPS 
124  
125 
/* Pass 1: process rows. */

126  
127 
dataptr = data; 
128 
for (ctr = DCTSIZE1; ctr >= 0; ctr) { 
129 
tmp0 = dataptr[0] + dataptr[7]; 
130 
tmp7 = dataptr[0]  dataptr[7]; 
131 
tmp1 = dataptr[1] + dataptr[6]; 
132 
tmp6 = dataptr[1]  dataptr[6]; 
133 
tmp2 = dataptr[2] + dataptr[5]; 
134 
tmp5 = dataptr[2]  dataptr[5]; 
135 
tmp3 = dataptr[3] + dataptr[4]; 
136 
tmp4 = dataptr[3]  dataptr[4]; 
137 

138 
/* Even part */

139 

140 
tmp10 = tmp0 + tmp3; /* phase 2 */

141 
tmp13 = tmp0  tmp3; 
142 
tmp11 = tmp1 + tmp2; 
143 
tmp12 = tmp1  tmp2; 
144 

145 
dataptr[0] = tmp10 + tmp11; /* phase 3 */ 
146 
dataptr[4] = tmp10  tmp11;

147 

148 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */

149 
dataptr[2] = tmp13 + z1; /* phase 5 */ 
150 
dataptr[6] = tmp13  z1;

151 

152 
/* Odd part */

153  
154 
tmp10 = tmp4 + tmp5; /* phase 2 */

155 
tmp11 = tmp5 + tmp6; 
156 
tmp12 = tmp6 + tmp7; 
157  
158 
/* The rotator is modified from fig 48 to avoid extra negations. */

159 
z5 = MULTIPLY(tmp10  tmp12, FIX_0_382683433); /* c6 */

160 
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2c6 */

161 
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */

162 
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */

163  
164 
z11 = tmp7 + z3; /* phase 5 */

165 
z13 = tmp7  z3; 
166  
167 
dataptr[5] = z13 + z2; /* phase 6 */ 
168 
dataptr[3] = z13  z2;

169 
dataptr[1] = z11 + z4;

170 
dataptr[7] = z11  z4;

171  
172 
dataptr += DCTSIZE; /* advance pointer to next row */

173 
} 
174  
175 
/* Pass 2: process columns. */

176  
177 
dataptr = data; 
178 
for (ctr = DCTSIZE1; ctr >= 0; ctr) { 
179 
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 
180 
tmp7 = dataptr[DCTSIZE*0]  dataptr[DCTSIZE*7]; 
181 
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 
182 
tmp6 = dataptr[DCTSIZE*1]  dataptr[DCTSIZE*6]; 
183 
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 
184 
tmp5 = dataptr[DCTSIZE*2]  dataptr[DCTSIZE*5]; 
185 
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 
186 
tmp4 = dataptr[DCTSIZE*3]  dataptr[DCTSIZE*4]; 
187 

188 
/* Even part */

189 

190 
tmp10 = tmp0 + tmp3; /* phase 2 */

191 
tmp13 = tmp0  tmp3; 
192 
tmp11 = tmp1 + tmp2; 
193 
tmp12 = tmp1  tmp2; 
194 

195 
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 
196 
dataptr[DCTSIZE*4] = tmp10  tmp11;

197 

198 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */

199 
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 
200 
dataptr[DCTSIZE*6] = tmp13  z1;

201 

202 
/* Odd part */

203  
204 
tmp10 = tmp4 + tmp5; /* phase 2 */

205 
tmp11 = tmp5 + tmp6; 
206 
tmp12 = tmp6 + tmp7; 
207  
208 
/* The rotator is modified from fig 48 to avoid extra negations. */

209 
z5 = MULTIPLY(tmp10  tmp12, FIX_0_382683433); /* c6 */

210 
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2c6 */

211 
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */

212 
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */

213  
214 
z11 = tmp7 + z3; /* phase 5 */

215 
z13 = tmp7  z3; 
216  
217 
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 
218 
dataptr[DCTSIZE*3] = z13  z2;

219 
dataptr[DCTSIZE*1] = z11 + z4;

220 
dataptr[DCTSIZE*7] = z11  z4;

221  
222 
dataptr++; /* advance pointer to next column */

223 
} 
224 
} 