AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions

Well-designed AP Board Solutions Class 6 Maths Chapter 7 Fractions Exercise 7.4 offers step-by-step explanations to help students understand problem-solving strategies.

Fractions Class 6 Exercise 7.4 Solutions – 6th Class Maths 7.4 Exercise Solutions

Question 1.
Write shaded portion as fraction. Arrange them in ascending and descending order using correct sign ‘<‘, ‘=’, ‘>’ between the fractions:
AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions Img 1
Solution:
i) Total number of divisions = 8
Number of shaded parts = 3
∴ Fraction = \(\frac { 3 }{ 8 }\)

ii) Total number of divisions = 8
Number of shaded parts = 6
∴ Fraction = \(\frac { 6 }{ 8 }\)

iii) Total number of divisions = 8
Number of shaded parts = 4
∴ Fraction = \(\frac { 4 }{ 8 }\)

iv) Total number of divisions = 8
Number of shaded parts = 1
∴ Fraction = \(\frac { 1 }{ 8 }\)

Now, the fractions are : \(\frac { 3 }{ 8 }\), \(\frac { 6 }{ 8 }\), \(\frac { 4 }{ 8 }\) and \(\frac { 1 }{ 8 }\) with same denominator.

Ascending order: \(\frac { 1 }{ 8 }\) < \(\frac { 3 }{ 8 }\) < \(\frac { 4 }{ 8 }\) < \(\frac { 6 }{ 8 }\) Descending order: \(\frac { 6 }{ 8 }\) > \(\frac { 4 }{ 8 }\) > \(\frac { 3 }{ 8 }\) > \(\frac { 1 }{ 8 }\)

AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions Img 2
Solution:
1) Total number of divisions = 9
Number of shaded parts = 8
∴ Fraction = \(\frac { 8 }{ 9 }\)

ii) Total number of divisons = 9
Number of shaded parts = 4
∴ Fraction = \(\frac { 4 }{ 9 }\)

iii) Total number of divisons = 9
Number of shaded parts = 3
∴ Fraction = \(\frac { 3 }{ 9 }\) (or) \(\frac { 1 }{ 3 }\)

iv) Total number of divisons = 9
Number of shaded parts = 6
∴ Fraction = \(\frac { 6 }{ 9 }\) (or) \(\frac { 2 }{ 3 }\)
∴ Fractions are \(\frac { 8 }{ 9 }\), \(\frac { 4 }{ 9 }\), \(\frac { 3 }{ 9 }\), \(\frac { 6 }{ 9 }\) with same denominator:
Ascending order: \(\frac { 3 }{ 9 }\) < \(\frac { 4 }{ 9 }\) < \(\frac { 6 }{ 9 }\) < \(\frac { 8 }{ 9 }\) Descending order:\(\frac { 8 }{ 9 }\) > \(\frac { 6 }{ 9 }\) > \(\frac { 4 }{ 9 }\) > \(\frac { 3 }{ 9 }\)

c) Show \(\frac { 2 }{ 6 }\), \(\frac { 4 }{ 6 }\), \(\frac { 8 }{ 6 }\) and \(\frac { 6 }{ 6 }\) on the number line. Put appropriate signs between the fractions given.
\(\frac { 5 }{ 6 }\) _____ \(\frac { 2 }{ 6 }\)
\(\frac { 3 }{ 0 }\) _____ 0
\(\frac { 1 }{ 6 }\) _____ \(\frac { 6 }{ 6 }\)
\(\frac { 8 }{ 6 }\) _____ \(\frac { 5 }{ 6 }\)
Solution:
\(\frac { 2 }{ 6 }\), \(\frac { 4 }{ 6 }\), \(\frac { 8 }{ 6 }\) and \(\frac { 6 }{ 6 }\)
AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions Img 3

Question 2.
Compare the fractions and put an appropriate sign.
a) \(\frac { 3 }{ 6 }\) ______ \(\frac { 5 }{ 6 }\)
Solution:
Here, the denominators of the two fractions are same and 3 < 5.
∴ \(\frac { 3 }{ 6 }\) < \(\frac { 5 }{ 6 }\) b) \(\frac { 1 }{ 7 }\) ______ \(\frac { 1 }{ 4 }\) Solution: Here, the numerators of the two fractions are same and 7 > 4.
∴ \(\frac { 1 }{ 7 }\) < \(\frac { 1 }{ 4 }\)

c) \(\frac { 4 }{ 5 }\) ______ \(\frac { 5 }{ 5 }\)
Solution:
Here, the denominators of the two fractions are same and 4 < 5.
∴ \(\frac { 4 }{ 5 }\) < \(\frac { 5 }{ 5 }\)

d) \(\frac { 3 }{ 5 }\) ______ \(\frac { 3 }{ 7 }\)
Solution:
Here, the numerators of the two fractions are same and 5 < 7. ∴ \(\frac { 3 }{ 5 }\) > \(\frac { 3 }{ 7 }\)

AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions

Question 3.
Make five more such pates and put an appropriate sign.
Solution:
a) \(\frac { 2 }{ 7 }\) > \(\frac { 2 }{ 1 }\)
b) \(\frac { 6 }{ 8 }\) > \(\frac { 3 }{ 8 }\)
c) \(\frac { 4 }{ 9 }\) < \(\frac { 3 }{ 9 }\)
d) \(\frac { 1 }{ 9 }\) < \(\frac { 5 }{ 9 }\)
e) \(\frac { 4 }{ 10 }\) < \(\frac { 6 }{ 10 }\)

Question 4
Look at the figures and write a between the given pairs of fractions.
AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions Img 4
Make five more such problems and solve them with your friends.
Solution:
a) \(\frac { 1 }{ 6 }\) < \(\frac { 1 }{ 3 }\)
b) \(\frac { 3 }{ 4 }\) < \(\frac { 2 }{ 6 }\) c) \(\frac { 2 }{ 3 }\) > \(\frac { 2 }{ 4 }\)
d) \(\frac { 6 }{ 6 }\) = \(\frac { 3 }{ 3 }\)
e) \(\frac { 5 }{ 6 }\) < \(\frac { 5 }{ 5 }\)
Make five more such problems yourself and solve them with your friends.

Question 5.
How quickly can you do this? Fill appropriate sign. (‘<‘, ‘=’, ‘>’)
a) \(\frac { 1 }{ 2 }\) ______ \(\frac { 1 }{ 5 }\)
Solution:
\(\frac { 1 }{ 2 }\) ______ \(\frac { 1 }{ 5 }\)
We have 1 × 5 = 5 and 1 × 2 = 2
Here, 2 < 5 ∴ \(\frac { 1 }{ 2 }\) > \(\frac { 1 }{ 5 }\)

b) \(\frac { 2 }{ 4 }\) ______ \(\frac { 3 }{ 6 }\)
Solution:
\(\frac { 2 }{ 4 }\) ______ \(\frac { 3 }{ 6 }\)
We have 2 × 6 = 12 and 3 × 4 = 12
Here, 12 = 12
∴ \(\frac { 2 }{ 4 }\) = \(\frac { 3 }{ 6 }\)

c) \(\frac { 3 }{ 5 }\) ______ \(\frac { 2 }{ 3 }\)
Solution:
\(\frac { 3 }{ 5 }\) > \(\frac { 2 }{ 3 }\)
We have 3 × 3 = 9 and 2 × 5 = 10
Here. 9 < 10
∴ \(\frac { 3 }{ 5 }\) < \(\frac { 2 }{ 3 }\)

d) \(\frac { 3 }{ 4 }\) ______ \(\frac { 2 }{ 8 }\)
Solution:
\(\frac { 3 }{ 4 }\) ______ \(\frac { 2 }{ 8 }\)
We have 3 × 3 = 9 and 2 × 5 = 10
Here. 9 < 10 ∴ \(\frac { 3 }{ 4 }\) > \(\frac { 2 }{ 8 }\)

e) \(\frac { 3 }{ 5 }\) ______ \(\frac { 6 }{ 5 }\)
Solution:
\(\frac { 3 }{ 5 }\) ______ \(\frac { 6 }{ 5 }\)
We have 3 × 5 = 15 and 6 × 5 = 30
Here, 15 < 30
∴ \(\frac { 3 }{ 5 }\) < \(\frac { 6 }{ 5 }\)

f) \(\frac { 7 }{ 9 }\) ______ \(\frac { 3 }{ 9 }\)
Solution:
\(\frac { 7 }{ 9 }\) ______ \(\frac { 3 }{ 9 }\)
We have 7 × 9 = 63 and 3 × 9 = 27
Here, 63 < 27 ∴ \(\frac { 7 }{ 9 }\) > \(\frac { 3 }{ 9 }\)

g) \(\frac { 1 }{ 4 }\) ______ \(\frac { 2 }{ 8 }\)
Solution:
\(\frac { 1 }{ 4 }\) ______ \(\frac { 2 }{ 8 }\)
We have 1 × 8 = 8 and 2 × 4 = 8
Here, 8 = 8
∴ \(\frac { 1 }{ 4 }\) = \(\frac { 2 }{ 8 }\)

h) \(\frac { 6 }{ 10 }\) ______ \(\frac { 4 }{ 5 }\)
Solution:
\(\frac { 6 }{ 10 }\) ______ \(\frac { 4 }{ 5 }\)
We have 6 × 5 = 30 and 4 × 10 = 40
Here, 30 < 40
∴ \(\frac { 6 }{ 10 }\) < \(\frac { 4 }{ 5 }\)

i) \(\frac { 3 }{ 4 }\) ______ \(\frac { 7 }{ 8 }\)
Solution:
\(\frac { 3 }{ 4 }\) ______ \(\frac { 7 }{ 8 }\)
We have 3 × 8 = 24 and 4 × 7 = 28
Here, 24 < 28
∴ \(\frac { 3 }{ 4 }\) < \(\frac { 7 }{ 8 }\)

j) \(\frac { 6 }{ 10 }\) ______ \(\frac { 3 }{ 5 }\)
Solution:
\(\frac { 6 }{ 10 }\) ______ \(\frac { 3 }{ 5 }\)
We have 6 × 5 = 30 and 10 × 3 = 30
Here, 30 = 30
∴ \(\frac { 6 }{ 10 }\) = \(\frac { 3 }{ 5 }\)

k) \(\frac { 5 }{ 7 }\) ______ \(\frac { 15 }{ 21 }\)
Solution:
\(\frac { 5 }{ 7 }\) ______ \(\frac { 15 }{ 21 }\)
We have 5 × 21 = 105 and 7 × 15 = 105
Here, 105 = 105
∴ \(\frac { 5 }{ 7 }\) = \(\frac { 15 }{ 21 }\)

AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions

Question 6.
The following fractions represent just three different numbers. Separate them into three groups of equivalent fractions, by changing each one to its simplest form.
a) \(\frac { 2 }{ 12 }\)
Solution:
\(\frac { 2 }{ 12 }\) = \(\frac{2 \div 2}{12 \div 2}\) = \(\frac { 1 }{ 6 }\) [∴ HCF of 2 and 12 is 2]

b) \(\frac { 3 }{ 15 }\)
Solution:
\(\frac { 3 }{ 15 }\) = \(\frac{3 \div 3}{15 \div 3}\) = \(\frac { 1 }{ 5 }\) [∴ HCF of 3 and 15 is 3]

c) \(\frac { 8 }{ 50 }\)
Solution:
\(\frac { 8 }{ 50 }\) = \(\frac{8 \div 2}{50 \div 2}\) = \(\frac { 4 }{ 25 }\) [∴ HCF of 8 and 50 is 2]

d) \(\frac { 16 }{ 100 }\)
Solution:
\(\frac { 16 }{ 100 }\) = \(\frac{16 \div 4}{100 \div 4}\) = \(\frac { 4 }{ 25 }\) [∴ HCF of 16 and 100 is 4]

e) \(\frac { 10 }{ 60 }\)
Solution:
\(\frac { 10 }{ 60 }\) = \(\frac{10 \div 10}{60 \div 10}\) = \(\frac { 1 }{ 6 }\) [∴ HCF of 10 and 60 is 10]

f) \(\frac { 15 }{ 75 }\)
Solution:
\(\frac { 15 }{ 75 }\) = \(\frac{15 \div 15}{75 \div 15}\) = \(\frac { 1 }{ 5 }\) [∴ HCF of 15 and 75 is 15]

g) \(\frac { 12 }{ 60 }\)
Solution:
\(\frac { 12 }{ 60 }\) = \(\frac{12 \div 12}{60 \div 12}\) = \(\frac { 1 }{ 5 }\) [∴ HCF of 12 and 60 is 12]

h) \(\frac { 16 }{ 96 }\)
Solution:
\(\frac { 16 }{ 96 }\) = \(\frac{16 \div 16}{96 \div 16}\) = \(\frac { 1 }{ 6 }\) [∴ HCF of 16 and 96 is 16]

i) \(\frac { 12 }{ 75 }\)
Solution:
\(\frac { 12 }{ 75 }\) = \(\frac{12 \div 3}{75 \div 3}\) = \(\frac { 4 }{ 25 }\) [∴ HCF of 12 and 75 is 3]

j) \(\frac { 12 }{ 72 }\)
Solution:
\(\frac { 12 }{ 72 }\) = \(\frac{12 \div 12}{72 \div 12}\) = \(\frac { 1 }{ 6 }\) [∴ HCF of 12 and 72 is 12]

k) \(\frac { 3 }{ 18 }\)
Solution:
\(\frac { 3 }{ 18 }\) = \(\frac{3 \div 3}{18 \div 3}\) = \(\frac { 1 }{ 6 }\) [∴ HCF of 3 and 18 is 3]

l) \(\frac { 4 }{ 25 }\)
Solution:
\(\frac { 4 }{ 25 }\) = \(\frac{4 \div 1}{25 \div 1}\) = \(\frac { 4 }{ 25 }\) [∴ HCF of 4 and 25 is 1]
Now, grouping the above fractions into equivalent fractions, we have
i) \(\frac { 2 }{ 12 }\) = \(\frac { 10 }{ 60 }\) = \(\frac { 16 }{ 96 }\) = \(\frac { 12 }{ 72 }\) = \(\frac { 3 }{ 18 }\) [each \(\frac { 1 }{ 6 }\)]
ii) \(\frac { 3 }{ 15 }\) = \(\frac { 15 }{ 75 }\) = \(\frac { 12 }{ 60 }\) [each \(\frac { 1 }{ 5 }\)]
iii) \(\frac { 8 }{ 50 }\) = \(\frac { 16 }{ 100 }\) = \(\frac { 12 }{ 75 }\) = \(\frac { 4 }{ 25 }\)
[each \(\frac { 4 }{ 25 }\)]

Question 7.
Find answers to the following. Write and indicate how you solved them.
a) Is \(\frac { 5 }{ 9 }\) equal to \(\frac { 4 }{ 5 }\)?
Solution:
\(\frac { 5 }{ 9 }\) and \(\frac { 4 }{ 5 }\)
By cross-multiplying, we get 5 × 5 = 25 and 4 × 9 = 36
Since 25 ≠ 36
∴ \(\frac { 5 }{ 9 }\) is not equal to \(\frac { 4 }{ 5 }\)

b) Is \(\frac { 9 }{ 16 }\) equal to \(\frac { 5 }{ 9 }\)?
Solution:
\(\frac { 9 }{ 16 }\) and \(\frac { 5 }{ 9 }\)
By cross-multiplying, we get 9 × 9 = 81 and 5 × 16 = 80
Since 81 ≠ 80
∴ \(\frac { 9 }{ 16 }\) is not equal to \(\frac { 5 }{ 9 }\)

c) Is \(\frac { 4 }{ 5 }\) equal to \(\frac { 16 }{ 20 }\) ?
Solution:
\(\frac { 4 }{ 5 }\) and \(\frac { 16 }{ 20 }\)
By cross-multiplying, we get 4 × 20 = 80 and 5 × 16 = 80
Since 80 = 80
∴ \(\frac { 4 }{ 5 }\) is equal to \(\frac { 16 }{ 20 }\)

d) Is \(\frac { 1 }{ 15 }\) equal to \(\frac { 4 }{ 30 }\) ?
Solution:
\(\frac { 1 }{ 15 }\) and \(\frac { 4 }{ 30 }\)
Bý cross-multiplying, we get 1 × 30 = 30 and 4 × 15 = 60
Since 30 ≠ 60
∴ \(\frac { 1 }{ 15 }\) is not equal to \(\frac { 4 }{ 30 }\)

Question 8.
Ila read 25 pages of a book containIng 100 pages. Lalita read \(\frac { 2 }{ 5 }\) of the same book. Who read less?
Solution:
Ila read 25 pages out of 100 pages.
∴ Fraction = \(\frac { 25 }{ 100 }\) = \(\frac{25 \div 25}{100 \div 25}\) = \(\frac { 1 }{ 4 }\)
Lalita reads \(\frac { 2 }{ 5 }\) of the same book.
Comparing. \(\frac { 1 }{ 4 }\) and \(\frac { 2 }{ 5 }\), we get
1 × 5 = 5 and 2 × 4 = 8
Hence lla read less pages.

Question 9.
Rafiq exercised for \(\frac { 3 }{ 6 }\) of an hour, while Rohit exercised for \(\frac { 3 }{ 4 }\) of an hour. Who exercised for a longer time?
Solution:
Rafiq exercised for \(\frac { 3 }{ 6 }\) of an hour.
Rohit exercised for \(\frac { 3 }{ 4 }\) of an hour.
Comparing \(\frac { 3 }{ 6 }\) and \(\frac { 3 }{ 4 }\), we get
3 × 4 = 12 and 3 × 6 = 18
Since 12 < 18 ∴ \(\frac { 3 }{ 4 }\) > \(\frac { 3 }{ 6 }\)

AP 6th Class Maths 7th Chapter Fractions Exercise 7.4 Solutions

Question 10.
In a class A of 25 students, 20 passed with 60% or more marks; in another class B of 30 students, 24 passed with 60% or more marks. In which class was a greater fraction of students getting with 60% or more marks ?
Solution:
In class A, 20 students passed in first class out of 25 students.
∴ Fraction of students getting first class = \(\frac { 20 }{ 25 }\) = \(\frac{20 \div 5}{25 \div 5}\) = \(\frac { 4 }{ 5 }\)
In class B, 24 students passed in first class out of 30 students.
∴ Fraction of students getting first class
= \(\frac { 24 }{ 30 }\) = \(\frac{24 \div 6}{30 \div 6}\) = \(\frac { 4 }{ 5 }\)
Comparing the two fractions, we get \(\frac { 4 }{ 5 }\) = \(\frac { 4 }{ 5 }\)
Hence, both the class A and B have the same fraction.

Leave a Comment