Well-designed AP 6th Class Maths Textbook Solutions Chapter 6 Integers InText Questions offers step-by-step explanations to help students understand problem-solving strategies.
AP 7th Class Maths 6th Chapter Integers InText Questions
Do this (Page No: 168)
Question 1.
(Who is where?)
Suppose David and Mohan have started walking from zero position in opposite diretrons. Let the steps to the right of zero be represented by ‘+’ sign and to the left of zero represented by ‘-‘ sign. If Mohan moves 5 steps to the right of zero it can be represented as +5 and if David moves 5 steps to the left of zero it can be represented as -5. Now represent the following positions with + or – sign :
a) 8 steps to the left of zero.
b) 7 steps to the right of zero.
c) 11 steps to the right of zero.
d) 6 steps to the left of zero.
Solution:
a) (-8)
b) (+7)
c) (+11)
d) (-6)
Do this (Page No: 170)
Question 2.
(Who follows me?)
We have seen from the previous examples that a movement to the right is made if the number by which we have to move is positive. If a movement of only 1 is made we get the successor of the number.
Write the succeeding number of the following :
Number | Successor |
10 | 11 |
8 | 9 |
-5 | -4 |
-3 | -2 |
0 | 1 |
A movement to the left is made if the number by which the token has to move is negative. If a movement of only 1 is made to the left, we get the predecessor of a number.
Number | Successor |
10 | 9 |
8 | 7 |
5 | 4 |
3 | 2 |
0 | -1 |
Try these (Page No: 172)
Question 1.
Write the following numbers with appropriate signs :
a) 100 m below sea level.
b) 25°C above 0°C temperature.
c) 15°C below 0°C temperature.
d) any five numbers less than 0.
Solution:
a) -100 m
b) +25°C
c) -15°C
d) -1,-5,-6,-8,-10
Try these (Page No: 176)
Question 1.
Mark -3, 7, -4, -8, -1 and -3 on the number line.
Solution:
Try these (Page No: 178)
Question 1.
Compare the following pairs of numbers using > or <.
Question 2.
From the above exercise, Rohini arrived at the following conclusions
a) Every positive integer is larger than every negative integer.
h) Zoro is less than every positive integer.
c) Zero is larger thar every negative integer.
d) Zero is neither a negative integer nor a positive integer.
e) Farther a number from zero on the right, larger is its value.
f) Farther a number from zero on the left, smaller is its value.
Do you agree with her? Give examples.
Solution:
Yes, I agree with Rohini.
Examples:
a) 1 > -5
b) 0 < 1
c) 0 > -3
d) -1 < 0 < 1
e) 5 > 0
f) -5 < 0
Do this (Page No: 184)
Question 1.
(Going up and down)
In Mohan’s house, there are stairs for going up to the terrace and for going down to the go down.
Let us consider the number of stairs going up to the terrace as positive integer, the number of stairs going down to the go down as negative integer and the number representing ground level as zero. Do the following and write down the answer as integer:
a) Go 6 steps up from the ground floor.
b) Go 4 steps down from the ground floor.
c) Go 5 steps up from the ground floor and then go 3 steps up further from there.
d) Go 6 steps down from the ground floor and then go down further 2 steps from there.
e) Go down 5 steps from the ground floor and then move up 12 steps from there.
f) Go 8 steps down from the ground floor and then go up 5 steps from there.
g) Go 7 steps up from the ground floor and then 10 steps down from there.
Ameena wrote them as follows:
a) +6
b) -4
c) (+5) + (+3) = +8
d) (-6) + (-2) = -4
e) (-5) + (+12) = +7
f) (-8) + (+5) = -3
g) (+7) + (-10) = 17
She has made some mistakes. Can you check her answers and correct those that are wrong?
Solution:
a) +6(✓)
b) -4(✓)
c) (+5) + (-3) = + 8(✓)
d) (-6) + (-2) = – 4(X); Correction (-6) + (-2) = -8
e) (-5) + (+12) = +7(✓)
f) (-8) + (+5) = -3(✓)
g) (+7) + (-10) = 17(X) : Correction (+7) + (-10) = -3
Try these (Page No: 186)
Question 1.
Draw a figure on the ground in the form of a horizontal number line as shown below. Frame questions as given in the said example and ask your friends.
Solution:
This is a game. So, try yourself.
Do this (Page No: 188)
Question 1.
Take two different coloured buttons like white and black. Let us denote one white button by ( +1 ) and one black button by ( -1 ). A pair of one white button ( +1 ) and one black button (-1) will denote zero i.e. [1 + (-1) = 0]
In the following table, integers are shown with the help of coloured buttons.
Let us perform additions with the help of the coloured buttons. Observe the following table and complete it.
Try these (Page No: 190)
Question 1.
Find the answers of the following additions:
a) (-11) + (-12)
b) (+10) + (+4)
c) (-32) + (-25)
d) (+23) + (+40)
Solution:
a) (-11) + (-12) = -23
b) (+10) + (+4) = +14
c) (-32) + (-25) = -57
d) (+23) + (+40) = +63
Try these (Page No: 190)
Question 1.
Find the solution of the following :
a) (-7) + (+8)
b) (-9) + (+13)
c) (+7) + (-10)
d) (+12) + (-7)
Solution:
a) (-7) + (+8) – (-7) + (+7) + (+1) = +1
b) (-9) + (+13) = (-9) + (+9) + (+4) = +4
c) (+7) + (-10) = (+7) + (-7) + (-3) = -3
d) (+12) + (-7) = (+5) + (+7) + (-7) = +5
Try these (Page No: 194)
Question 1.
Find the solution of the following additions using a number line :
a) (-2)+6
b) (-6)+2
Make two such questions and solve them using the number line.
Solution:
Question 2.
Find the solution of the following without using number line:
a) (+7) + (-11)
b) (-13) + (+10)
c) (-7) + (+9)
d) (+10) + (-5)
Make five such questions and solve them.
Solution:
a) (+7) + (-11) = -4
b) (-13) + (+10) = -3
c) (-7) + (+9) = +2
d) (+10) + (-5) = +5
Another five questions:
i) (-3) + (+5) = +2
ii) (+7) + (-11) = -4
iii) (-10) + (+10) = 0
iv) (+25) + (-30) = -5
v) (-20) + (30) = +10