AP 6th Class Maths 12th Chapter Ratio and Proportion Exercise 12.2 Solutions

Well-designed AP 6th Class Maths Guide Chapter 12 Ratio and Proportion Exercise 12.2 offers step-by-step explanations to help students understand problem-solving strategies.

Algebra Class 6 Exercise 12.2 Solutions – 6th Class Maths 12.2 Exercise Solutions

Question 1.
Determine if the following are in proportion.
a) 15, 45, 40, 120
Solution:
15 and 45 = \(\frac { 15 }{ 45 }\) = \(\frac{15 \div 15}{45\div15}\) = \(\frac { 1 }{ 3 }\) = 1 : 3
40 and 120 = \(\frac { 40 }{ 45 }\) = \(\frac{40 \div 40}{120\div 40}\) = \(\frac { 1 }{ 3 }\) = 1 : 3
∴ Since 1 : 3 = 1 : 3
Yes, 15, 45, 40 and 120 are in proportion.

b) 33,121,9,96
Solution:
33 and 121 = \(\frac{33}{121}\) = \(\frac{33 \div 11}{121\div 11}\) = \(\frac { 3 }{ 11 }\) = 3 : 11
9 and 96 = \(\frac{9}{96}\) = \(\frac{9 \div 3}{96\div 3}\) = \(\frac { 3 }{ 32 }\) = 3 : 32
∴ Since 3 : 11 ≠ 3 : 32
No, 33, 121, 9 and 96 are not in proportion.

c) 24,28,36,48
Solution:
24 and 28 = \(\frac{24}{28}\) = \(\frac{24\div 4}{28\div 4}\) = \(\frac { 6 }{ 7 }\) = 6 : 7
36 and 48 = \(\frac{36}{48}\) = \(\frac{36\div 12}{48\div 12}\) = \(\frac { 3 }{ 4 }\) = 3 : 4
∴ Since 6 : 7 ≠ 3 : 4
No, 24, 28, 36 and 48 are not in proportion.

d) 32,48,70,210
Solution:
32 and 48 = \(\frac{36}{48}\) = \(\frac{32\div 16}{48\div 16}\) = \(\frac { 2 }{ 3 }\) = 2 : 3
70 and 210 = \(\frac{70}{210}\) = \(\frac{70\div 70}{210\div 70}\) = \(\frac { 1 }{ 3 }\) = 1 : 3
∴ Since 2 : 3 ≠ 1 : 3
No, 32, 48, 70 and 210 are not in proportion.

e) 4,6,8,12
Solution:
4 and 6 = \(\frac{4}{6}\) = \(\frac{4\div 2}{6\div 2}\) = \(\frac { 2 }{ 3 }\) = 2 : 3
8 and 12 = \(\frac{8}{12}\) = \(\frac{8\div 4}{12\div 4}\) = \(\frac { 2 }{ 3 }\) = 2 : 3
∴ Since 2 : 3 = 2 : 3
Yes, 4,6,8 and 12 are in proportion.

f) 33,44,75,100
Solution:
33 and 44 = \(\frac{33}{44}\) = \(\frac{33\div 11}{44\div 11}\) = \(\frac { 3 }{ 4 }\) = 3 : 4
75 and 100 = \(\frac{75}{100}\) = \(\frac{75\div 25}{100\div 25}\) = \(\frac { 3 }{ 4 }\) = 3 : 4
∴ Since 3 : 4 = 3 : 4
Yes, 33,44,75 and 100 are in proportion.

AP 6th Class Maths 12th Chapter Ratio and Proportion Exercise 12.2 Solutions

Question 2.
Write True (T) or False (F) against each of the following statements :
a) 16 : 24 :: 20 : 30
Solution:
16 : 24 :: 20 : 30
16 : 24 = \(\frac{16}{24}\) = 2 : 3
20 : 30 = \(\frac{20}{30}\) = 2 : 3
2 : 3 = 2 : 3
∴ The given statement (a) is True

b) 21 : 6 :: 35 : 10
Solution:
21 : 6 :: 35 : 10
21 : 6 = \(\frac { 1 }{ 2 }\) ⇒ \(\frac { 1 }{ 2 }\) = 7 : 2
35 : 10 = \(\frac { 35 }{ 10 }\) ⇒ \(\frac { 7 }{ 2 }\) = 7 : 2
7 : 2 = 7 : 2
∴ The given statement (b) is True

c) 12 : 8 :: 28 : 12
Solution:
12 : 18 = \(\frac { 12 }{ 18 }\) = 2 : 3
28 : 12 = \(\frac { 28 }{ 12 }\) ⇒ \(\frac { 7 }{ 3 }\) = 7 : 3
2 : 3 = 7 : 3
∴ The given statement (c) is False
∴ The given statement (c) is False

d) 8 : 9 :: 24 : 27
Solution:
24 : 27 = \(\frac { 24 }{ 27 }\) = 8 : 9
8 : 9 = 8 : 9
∴ The given statement (d) is True

e) 5.2 : 3.9 :: 3 : 4
Solution:
5.2 : 3.9 = \(\frac { 5.2 }{ 3.9 }\) = \(\frac{5.2 \times 10}{3.9 \times 10}\) = \(\frac { 52 }{ 39 }\) ⇒ \(\frac { 4 }{ 3 }\) = 4 : 3
4 : 3 ≠ 3 : 4
∴ The given statement (e) is false
∴ The given statement (e) is False

f) 0.9 : 0.36 :: 10 : 4
Solution:
0.9 : 0.36 :: 10 : 4
AP 6th Class Maths 12th Chapter Ratio and Proportion Exercise 12.1 Solutions Img 11
5 : 2 = 5 : 2.
∴ The given statement (f) is True

Question 3.
Are the following statements true ?
a) 40 persons : 200 persons = ₹ 15 : ₹ 75
Solution:
40 persons : 200 persons
= \(\frac { 40 }{ 200 }\) = \(\frac{40 \div 40}{200 \div 40}\) = \(\frac { 1 }{ 5 }\) = 1 : 5
₹ 15 : ₹ 75 = \(\frac { 15 }{ 75 }\) = \(\frac{15 \div 15}{75 \times 15}\) = \(\frac { 1 }{ 5 }\) = 1 : 5
∴ Statement (a) is True

b) 7.5 litres : 15 litres = 5 kg : 10 kg
Solution:
7.5 litres : 15 litres
= \(\frac{7.5}{15}\) = \(\frac{75}{150}\) = \(\frac{75 \div 75}{150 \div 75}\) = \(\frac { 1 }{ 2 }\) = 1 : 2
5 kg : 10 kg = \(\frac { 5 }{ 10 }\) = \(\frac{5 \div 5}{10 \div 5}\) = \(\frac { 1 }{ 2 }\) = 1 : 2
∴ Statement (b) is True

c) 99 kg : 45 kg = ₹ 44 : ₹ 20
Solution:
99 kg : 45 kg = \(\frac { 99 }{ 45 }\) = \(\frac{99 \div 9}{45 \div 9}\) = \(\frac { 11 }{ 5 }\) = 11 : 5
₹ 44 : ₹ 20 = \(\frac { 44 }{ 20 }\) = \(\frac{44 \div 4}{20 \div 4}\) = \(\frac { 11 }{ 5 }\) = 11 : 5
∴ Statement (c) is True

d) 32 m : 64 m = 6 sec : 12 sec
Solution:
32 m : 64 m = \(\frac { 32 }{ 64 }\) = \(\frac{32 \div 32}{64 \div 32}\) = \(\frac { 1 }{2 }\) = 1 : 2
6 sec : 12 sec = \(\frac { 6 }{ 12 }\) = \(\frac{6 \div 6}{12 \div 6}\) = \(\frac { 1 }{2 }\) = 1 : 2
∴ Statement (d) is True

e) 45 km 60 km = 12 hours : 15 hours
Solution:
45 km : 60 km = \(\frac { 45 }{ 60 }\) = \(\frac { 45 /div 15 }{60 /div 15 }\) = \(\frac { 3 }{ 4 }\) = 3 : 4
12 hours : 15 hours = \(\frac { 12 }{ 15 }\) = \(\frac { 12 /div 3 }{15 /div 3 }\) = \(\frac { 4 }{ 5 }\) = 4 : 5
Since 3 : 4 ≠ 4 : 5
∴ Statement (e) is not True.

AP 6th Class Maths 12th Chapter Ratio and Proportion Exercise 12.2 Solutions

Question 4.
Determine if the following ratios form a proportion. Also, write the middle terms and extreme terms where the ratios form a proportion.
a) 25 cm : 1 m and ₹ 40 : ₹ 160
Solution:
25 cm : 1m = 25 cm : 1000 m [∵ 1m = 100 cm]
= \(\frac { 25 }{ 100 }\) = \(\frac { 25 /div 25 }{100 /div 25 }\) = \(\frac { 1 }{ 4 }\) = 1 : 4
₹ 40 : ₹ 160 = \(\frac { 40 }{ 160 }\) = \(\frac { 40 /div 40 }{ 160 /div 40 }\) = \(\frac { 1 }{ 4 }\) = 1 : 4
∴ The given ratios are in proportion.
Extreme terms are 25 cm and ₹ 160
Middle terms are 1 m and ₹ 40

b) 39 litres : 65 litres and 6 bottles : 10 bottles
Solution:
39 litres : 65 litres = \(\frac { 39 }{ 65 }\) = \(\frac { 39 /div 13 }{ 65 /div 13 }\) = \(\frac { 3 }{ 5 }\) = 3 : 5
6 bottles : 10 bottles = \(\frac { 6 }{ 10 }\) = \(\frac { 6/div 2 }{ 10 /div 2 }\) = \(\frac { 3 }{ 5 }\) = 3 : 5
∴ The given ratios are in proportion.
Extreme terms are 39 litres and 10 bottles
Middle terms are 65 litres and 6 bottles

c) 2 kg : 80 kg and 25 g : 625 g
Solution:
2 kg : 80 kg = \(\frac { 2 }{ 80 }\) = \(\frac { 2/div 2 }{ 80 /div 2 }\) = \(\frac { 1 }{ 40 }\) = 1 : 4
25 g : 625 g = \(\frac { 25 }{ 625 }\) = \(\frac { 25/div 25 }{ 625 /div 25 }\) = \(\frac { 1 }{ 25 }\) = 1: 25
Since 1 : 4 ≠ 1 : 25
∴ The given ratios are not in proportion.

d) 200 ml : 2.5 litre and ₹ 4 : ₹ 50
Soluton:
200 ml : 2.5 litre
= \(\frac { 200 }{ 2500 }\) = \(\frac { 200/div 100 }{ 2500 /div 100 }\) = \(\frac { 2 }{ 25 }\) = 2 : 25
₹ 4 : ₹ 50 = \(\frac { 4 }{ 50 }\) = \(\frac { 4/div 2 }{ 50 /div 2 }\) = \(\frac { 2 }{ 25 }\) = 2 : 25
∴ The given ratios are in proportion.
Extreme terms are 200 ml and ₹ 50
Middle terms are 2.5 litre and ₹ 4

Leave a Comment